# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import platform import yaml import time import datetime import paddle import paddle.distributed as dist from tqdm import tqdm import cv2 import numpy as np from argparse import ArgumentParser, RawDescriptionHelpFormatter from ppocr.utils.stats import TrainingStats from ppocr.utils.save_load import save_model from ppocr.utils.utility import print_dict, AverageMeter from ppocr.utils.logging import get_logger from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers from ppocr.utils import profiler from ppocr.data import build_dataloader class ArgsParser(ArgumentParser): def __init__(self): super(ArgsParser, self).__init__( formatter_class=RawDescriptionHelpFormatter) self.add_argument("-c", "--config", help="configuration file to use") self.add_argument( "-o", "--opt", nargs='+', help="set configuration options") self.add_argument( '-p', '--profiler_options', type=str, default=None, help='The option of profiler, which should be in format ' \ '\"key1=value1;key2=value2;key3=value3\".' ) def parse_args(self, argv=None): args = super(ArgsParser, self).parse_args(argv) assert args.config is not None, \ "Please specify --config=configure_file_path." args.opt = self._parse_opt(args.opt) return args def _parse_opt(self, opts): config = {} if not opts: return config for s in opts: s = s.strip() k, v = s.split('=') config[k] = yaml.load(v, Loader=yaml.Loader) return config def load_config(file_path): """ Load config from yml/yaml file. Args: file_path (str): Path of the config file to be loaded. Returns: global config """ _, ext = os.path.splitext(file_path) assert ext in ['.yml', '.yaml'], "only support yaml files for now" config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader) return config def merge_config(config, opts): """ Merge config into global config. Args: config (dict): Config to be merged. Returns: global config """ for key, value in opts.items(): if "." not in key: if isinstance(value, dict) and key in config: config[key].update(value) else: config[key] = value else: sub_keys = key.split('.') assert ( sub_keys[0] in config ), "the sub_keys can only be one of global_config: {}, but get: " \ "{}, please check your running command".format( config.keys(), sub_keys[0]) cur = config[sub_keys[0]] for idx, sub_key in enumerate(sub_keys[1:]): if idx == len(sub_keys) - 2: cur[sub_key] = value else: cur = cur[sub_key] return config def check_device(use_gpu, use_xpu=False, use_npu=False, use_mlu=False): """ Log error and exit when set use_gpu=true in paddlepaddle cpu version. """ err = "Config {} cannot be set as true while your paddle " \ "is not compiled with {} ! \nPlease try: \n" \ "\t1. Install paddlepaddle to run model on {} \n" \ "\t2. Set {} as false in config file to run " \ "model on CPU" try: if use_gpu and use_xpu: print("use_xpu and use_gpu can not both be ture.") if use_gpu and not paddle.is_compiled_with_cuda(): print(err.format("use_gpu", "cuda", "gpu", "use_gpu")) sys.exit(1) if use_xpu and not paddle.device.is_compiled_with_xpu(): print(err.format("use_xpu", "xpu", "xpu", "use_xpu")) sys.exit(1) if use_npu and not paddle.device.is_compiled_with_npu(): print(err.format("use_npu", "npu", "npu", "use_npu")) sys.exit(1) if use_mlu and not paddle.device.is_compiled_with_mlu(): print(err.format("use_mlu", "mlu", "mlu", "use_mlu")) sys.exit(1) except Exception as e: pass def to_float32(preds): if isinstance(preds, dict): for k in preds: if isinstance(preds[k], dict) or isinstance(preds[k], list): preds[k] = to_float32(preds[k]) elif isinstance(preds[k], paddle.Tensor): preds[k] = preds[k].astype(paddle.float32) elif isinstance(preds, list): for k in range(len(preds)): if isinstance(preds[k], dict): preds[k] = to_float32(preds[k]) elif isinstance(preds[k], list): preds[k] = to_float32(preds[k]) elif isinstance(preds[k], paddle.Tensor): preds[k] = preds[k].astype(paddle.float32) elif isinstance(preds, paddle.Tensor): preds = preds.astype(paddle.float32) return preds def train(config, train_dataloader, valid_dataloader, device, model, loss_class, optimizer, lr_scheduler, post_process_class, eval_class, pre_best_model_dict, logger, log_writer=None, scaler=None, amp_level='O2', amp_custom_black_list=[]): cal_metric_during_train = config['Global'].get('cal_metric_during_train', False) calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1) log_smooth_window = config['Global']['log_smooth_window'] epoch_num = config['Global']['epoch_num'] print_batch_step = config['Global']['print_batch_step'] eval_batch_step = config['Global']['eval_batch_step'] profiler_options = config['profiler_options'] global_step = 0 if 'global_step' in pre_best_model_dict: global_step = pre_best_model_dict['global_step'] start_eval_step = 0 if type(eval_batch_step) == list and len(eval_batch_step) >= 2: start_eval_step = eval_batch_step[0] eval_batch_step = eval_batch_step[1] if len(valid_dataloader) == 0: logger.info( 'No Images in eval dataset, evaluation during training ' \ 'will be disabled' ) start_eval_step = 1e111 logger.info( "During the training process, after the {}th iteration, " \ "an evaluation is run every {} iterations". format(start_eval_step, eval_batch_step)) save_epoch_step = config['Global']['save_epoch_step'] save_model_dir = config['Global']['save_model_dir'] if not os.path.exists(save_model_dir): os.makedirs(save_model_dir) main_indicator = eval_class.main_indicator best_model_dict = {main_indicator: 0} best_model_dict.update(pre_best_model_dict) train_stats = TrainingStats(log_smooth_window, ['lr']) model_average = False model.train() use_srn = config['Architecture']['algorithm'] == "SRN" extra_input_models = [ "SRN", "NRTR", "SAR", "SEED", "SVTR", "SPIN", "VisionLAN", "RobustScanner", "RFL", 'DRRG' ] extra_input = False if config['Architecture']['algorithm'] == 'Distillation': for key in config['Architecture']["Models"]: extra_input = extra_input or config['Architecture']['Models'][key][ 'algorithm'] in extra_input_models else: extra_input = config['Architecture']['algorithm'] in extra_input_models try: model_type = config['Architecture']['model_type'] except: model_type = None algorithm = config['Architecture']['algorithm'] start_epoch = best_model_dict[ 'start_epoch'] if 'start_epoch' in best_model_dict else 1 total_samples = 0 train_reader_cost = 0.0 train_batch_cost = 0.0 reader_start = time.time() eta_meter = AverageMeter() max_iter = len(train_dataloader) - 1 if platform.system( ) == "Windows" else len(train_dataloader) for epoch in range(start_epoch, epoch_num + 1): if train_dataloader.dataset.need_reset: train_dataloader = build_dataloader( config, 'Train', device, logger, seed=epoch) max_iter = len(train_dataloader) - 1 if platform.system( ) == "Windows" else len(train_dataloader) for idx, batch in enumerate(train_dataloader): profiler.add_profiler_step(profiler_options) train_reader_cost += time.time() - reader_start if idx >= max_iter: break lr = optimizer.get_lr() images = batch[0] if use_srn: model_average = True # use amp if scaler: with paddle.amp.auto_cast( level=amp_level, custom_black_list=amp_custom_black_list): if model_type == 'table' or extra_input: preds = model(images, data=batch[1:]) elif model_type in ["kie"]: preds = model(batch) else: preds = model(images) preds = to_float32(preds) loss = loss_class(preds, batch) avg_loss = loss['loss'] scaled_avg_loss = scaler.scale(avg_loss) scaled_avg_loss.backward() scaler.minimize(optimizer, scaled_avg_loss) else: if model_type == 'table' or extra_input: preds = model(images, data=batch[1:]) elif model_type in ["kie", 'sr']: preds = model(batch) else: preds = model(images) loss = loss_class(preds, batch) avg_loss = loss['loss'] avg_loss.backward() optimizer.step() optimizer.clear_grad() if cal_metric_during_train and epoch % calc_epoch_interval == 0: # only rec and cls need batch = [item.numpy() for item in batch] if model_type in ['kie', 'sr']: eval_class(preds, batch) elif model_type in ['table']: post_result = post_process_class(preds, batch) eval_class(post_result, batch) else: if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2' ]: # for multi head loss post_result = post_process_class( preds['ctc'], batch[1]) # for CTC head out elif config['Loss']['name'] in ['VLLoss']: post_result = post_process_class(preds, batch[1], batch[-1]) else: post_result = post_process_class(preds, batch[1]) eval_class(post_result, batch) metric = eval_class.get_metric() train_stats.update(metric) train_batch_time = time.time() - reader_start train_batch_cost += train_batch_time eta_meter.update(train_batch_time) global_step += 1 total_samples += len(images) if not isinstance(lr_scheduler, float): lr_scheduler.step() # logger and visualdl stats = {k: v.numpy().mean() for k, v in loss.items()} stats['lr'] = lr train_stats.update(stats) if log_writer is not None and dist.get_rank() == 0: log_writer.log_metrics( metrics=train_stats.get(), prefix="TRAIN", step=global_step) if dist.get_rank() == 0 and ( (global_step > 0 and global_step % print_batch_step == 0) or (idx >= len(train_dataloader) - 1)): logs = train_stats.log() eta_sec = ((epoch_num + 1 - epoch) * \ len(train_dataloader) - idx - 1) * eta_meter.avg eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec))) strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \ '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \ 'ips: {:.5f} samples/s, eta: {}'.format( epoch, epoch_num, global_step, logs, train_reader_cost / print_batch_step, train_batch_cost / print_batch_step, total_samples / print_batch_step, total_samples / train_batch_cost, eta_sec_format) logger.info(strs) total_samples = 0 train_reader_cost = 0.0 train_batch_cost = 0.0 # eval if global_step > start_eval_step and \ (global_step - start_eval_step) % eval_batch_step == 0 \ and dist.get_rank() == 0: if model_average: Model_Average = paddle.incubate.optimizer.ModelAverage( 0.15, parameters=model.parameters(), min_average_window=10000, max_average_window=15625) Model_Average.apply() cur_metric = eval( model, valid_dataloader, post_process_class, eval_class, model_type, extra_input=extra_input, scaler=scaler, amp_level=amp_level, amp_custom_black_list=amp_custom_black_list) cur_metric_str = 'cur metric, {}'.format(', '.join( ['{}: {}'.format(k, v) for k, v in cur_metric.items()])) logger.info(cur_metric_str) # logger metric if log_writer is not None: log_writer.log_metrics( metrics=cur_metric, prefix="EVAL", step=global_step) if cur_metric[main_indicator] >= best_model_dict[ main_indicator]: best_model_dict.update(cur_metric) best_model_dict['best_epoch'] = epoch save_model( model, optimizer, save_model_dir, logger, config, is_best=True, prefix='best_accuracy', best_model_dict=best_model_dict, epoch=epoch, global_step=global_step) best_str = 'best metric, {}'.format(', '.join([ '{}: {}'.format(k, v) for k, v in best_model_dict.items() ])) logger.info(best_str) # logger best metric if log_writer is not None: log_writer.log_metrics( metrics={ "best_{}".format(main_indicator): best_model_dict[main_indicator] }, prefix="EVAL", step=global_step) log_writer.log_model( is_best=True, prefix="best_accuracy", metadata=best_model_dict) reader_start = time.time() if dist.get_rank() == 0: save_model( model, optimizer, save_model_dir, logger, config, is_best=False, prefix='latest', best_model_dict=best_model_dict, epoch=epoch, global_step=global_step) if log_writer is not None: log_writer.log_model(is_best=False, prefix="latest") if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0: save_model( model, optimizer, save_model_dir, logger, config, is_best=False, prefix='iter_epoch_{}'.format(epoch), best_model_dict=best_model_dict, epoch=epoch, global_step=global_step) if log_writer is not None: log_writer.log_model( is_best=False, prefix='iter_epoch_{}'.format(epoch)) best_str = 'best metric, {}'.format(', '.join( ['{}: {}'.format(k, v) for k, v in best_model_dict.items()])) logger.info(best_str) if dist.get_rank() == 0 and log_writer is not None: log_writer.close() return def eval(model, valid_dataloader, post_process_class, eval_class, model_type=None, extra_input=False, scaler=None, amp_level='O2', amp_custom_black_list=[]): model.eval() with paddle.no_grad(): total_frame = 0.0 total_time = 0.0 pbar = tqdm( total=len(valid_dataloader), desc='eval model:', position=0, leave=True) max_iter = len(valid_dataloader) - 1 if platform.system( ) == "Windows" else len(valid_dataloader) sum_images = 0 for idx, batch in enumerate(valid_dataloader): if idx >= max_iter: break images = batch[0] start = time.time() # use amp if scaler: with paddle.amp.auto_cast( level=amp_level, custom_black_list=amp_custom_black_list): if model_type == 'table' or extra_input: preds = model(images, data=batch[1:]) elif model_type in ["kie"]: preds = model(batch) elif model_type in ['sr']: preds = model(batch) sr_img = preds["sr_img"] lr_img = preds["lr_img"] else: preds = model(images) preds = to_float32(preds) else: if model_type == 'table' or extra_input: preds = model(images, data=batch[1:]) elif model_type in ["kie"]: preds = model(batch) elif model_type in ['sr']: preds = model(batch) sr_img = preds["sr_img"] lr_img = preds["lr_img"] else: preds = model(images) batch_numpy = [] for item in batch: if isinstance(item, paddle.Tensor): batch_numpy.append(item.numpy()) else: batch_numpy.append(item) # Obtain usable results from post-processing methods total_time += time.time() - start # Evaluate the results of the current batch if model_type in ['table', 'kie']: if post_process_class is None: eval_class(preds, batch_numpy) else: post_result = post_process_class(preds, batch_numpy) eval_class(post_result, batch_numpy) elif model_type in ['sr']: eval_class(preds, batch_numpy) else: post_result = post_process_class(preds, batch_numpy[1]) eval_class(post_result, batch_numpy) pbar.update(1) total_frame += len(images) sum_images += 1 # Get final metric,eg. acc or hmean metric = eval_class.get_metric() pbar.close() model.train() metric['fps'] = total_frame / total_time return metric def update_center(char_center, post_result, preds): result, label = post_result feats, logits = preds logits = paddle.argmax(logits, axis=-1) feats = feats.numpy() logits = logits.numpy() for idx_sample in range(len(label)): if result[idx_sample][0] == label[idx_sample][0]: feat = feats[idx_sample] logit = logits[idx_sample] for idx_time in range(len(logit)): index = logit[idx_time] if index in char_center.keys(): char_center[index][0] = ( char_center[index][0] * char_center[index][1] + feat[idx_time]) / (char_center[index][1] + 1) char_center[index][1] += 1 else: char_center[index] = [feat[idx_time], 1] return char_center def get_center(model, eval_dataloader, post_process_class): pbar = tqdm(total=len(eval_dataloader), desc='get center:') max_iter = len(eval_dataloader) - 1 if platform.system( ) == "Windows" else len(eval_dataloader) char_center = dict() for idx, batch in enumerate(eval_dataloader): if idx >= max_iter: break images = batch[0] start = time.time() preds = model(images) batch = [item.numpy() for item in batch] # Obtain usable results from post-processing methods post_result = post_process_class(preds, batch[1]) #update char_center char_center = update_center(char_center, post_result, preds) pbar.update(1) pbar.close() for key in char_center.keys(): char_center[key] = char_center[key][0] return char_center def preprocess(is_train=False): FLAGS = ArgsParser().parse_args() profiler_options = FLAGS.profiler_options config = load_config(FLAGS.config) config = merge_config(config, FLAGS.opt) profile_dic = {"profiler_options": FLAGS.profiler_options} config = merge_config(config, profile_dic) if is_train: # save_config save_model_dir = config['Global']['save_model_dir'] os.makedirs(save_model_dir, exist_ok=True) with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f: yaml.dump( dict(config), f, default_flow_style=False, sort_keys=False) log_file = '{}/train.log'.format(save_model_dir) else: log_file = None logger = get_logger(log_file=log_file) # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global'].get('use_gpu', False) use_xpu = config['Global'].get('use_xpu', False) use_npu = config['Global'].get('use_npu', False) use_mlu = config['Global'].get('use_mlu', False) alg = config['Architecture']['algorithm'] assert alg in [ 'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN', 'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE', 'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE', 'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'SPIN', 'VisionLAN', 'Gestalt', 'SLANet', 'RobustScanner', 'CT', 'RFL', 'DRRG' ] if use_xpu: device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0)) elif use_npu: device = 'npu:{0}'.format(os.getenv('FLAGS_selected_npus', 0)) elif use_mlu: device = 'mlu:{0}'.format(os.getenv('FLAGS_selected_mlus', 0)) else: device = 'gpu:{}'.format(dist.ParallelEnv() .dev_id) if use_gpu else 'cpu' check_device(use_gpu, use_xpu, use_npu, use_mlu) device = paddle.set_device(device) config['Global']['distributed'] = dist.get_world_size() != 1 loggers = [] if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']: save_model_dir = config['Global']['save_model_dir'] vdl_writer_path = '{}/vdl/'.format(save_model_dir) log_writer = VDLLogger(vdl_writer_path) loggers.append(log_writer) if ('use_wandb' in config['Global'] and config['Global']['use_wandb']) or 'wandb' in config: save_dir = config['Global']['save_model_dir'] wandb_writer_path = "{}/wandb".format(save_dir) if "wandb" in config: wandb_params = config['wandb'] else: wandb_params = dict() wandb_params.update({'save_dir': save_model_dir}) log_writer = WandbLogger(**wandb_params, config=config) loggers.append(log_writer) else: log_writer = None print_dict(config, logger) if loggers: log_writer = Loggers(loggers) else: log_writer = None logger.info('train with paddle {} and device {}'.format(paddle.__version__, device)) return config, device, logger, log_writer