# Configuration - [1. Optional Parameter List](#1-optional-parameter-list) - [2. Intorduction to Global Parameters of Configuration File](#2-intorduction-to-global-parameters-of-configuration-file) - [3. Multilingual Config File Generation](#3-multilingual-config-file-generation) ## 1. Optional Parameter List The following list can be viewed through `--help` | FLAG | Supported script | Use | Defaults | Note | | :----------------------: | :------------: | :---------------: | :--------------: | :-----------------: | | -c | ALL | Specify configuration file to use | None | **Please refer to the parameter introduction for configuration file usage** | | -o | ALL | set configuration options | None | Configuration using -o has higher priority than the configuration file selected with -c. E.g: -o Global.use_gpu=false | ## 2. Intorduction to Global Parameters of Configuration File Take rec_chinese_lite_train_v2.0.yml as an example ### Global | Parameter | Use | Defaults | Note | | :----------------------: | :---------------------: | :--------------: | :--------------------: | | use_gpu | Set using GPU or not | true | \ | | epoch_num | Maximum training epoch number | 500 | \ | | log_smooth_window | Log queue length, the median value in the queue each time will be printed | 20 | \ | | print_batch_step | Set print log interval | 10 | \ | | save_model_dir | Set model save path | output/{算法名称} | \ | | save_epoch_step | Set model save interval | 3 | \ | | eval_batch_step | Set the model evaluation interval | 2000 or [1000, 2000] | runing evaluation every 2000 iters or evaluation is run every 2000 iterations after the 1000th iteration | | cal_metric_during_train | Set whether to evaluate the metric during the training process. At this time, the metric of the model under the current batch is evaluated | true | \ | | load_static_weights | Set whether the pre-training model is saved in static graph mode (currently only required by the detection algorithm) | true | \ | | pretrained_model | Set the path of the pre-trained model | ./pretrain_models/CRNN/best_accuracy | \ | | checkpoints | set model parameter path | None | Used to load parameters after interruption to continue training| | use_visualdl | Set whether to enable visualdl for visual log display | False | [Tutorial](https://www.paddlepaddle.org.cn/paddle/visualdl) | | infer_img | Set inference image path or folder path | ./infer_img | \|| | character_dict_path | Set dictionary path | ./ppocr/utils/ppocr_keys_v1.txt | If the character_dict_path is None, model can only recognize number and lower letters | | max_text_length | Set the maximum length of text | 25 | \ | | use_space_char | Set whether to recognize spaces | True | Only support in character_type=ch mode | | label_list | Set the angle supported by the direction classifier | ['0','180'] | Only valid in angle classifier model | | save_res_path | Set the save address of the test model results | ./output/det_db/predicts_db.txt | Only valid in the text detection model | ### Optimizer ([ppocr/optimizer](../../ppocr/optimizer)) | Parameter | Use | Defaults | Note | | :---------------------: | :---------------------: | :--------------: | :--------------------: | | name | Optimizer class name | Adam | Currently supports`Momentum`,`Adam`,`RMSProp`, see [ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py) | | beta1 | Set the exponential decay rate for the 1st moment estimates | 0.9 | \ | | beta2 | Set the exponential decay rate for the 2nd moment estimates | 0.999 | \ | | clip_norm | The maximum norm value | - | \ | | **lr** | Set the learning rate decay method | - | \ | | name | Learning rate decay class name | Cosine | Currently supports`Linear`,`Cosine`,`Step`,`Piecewise`, see[ppocr/optimizer/learning_rate.py](../../ppocr/optimizer/learning_rate.py) | | learning_rate | Set the base learning rate | 0.001 | \ | | **regularizer** | Set network regularization method | - | \ | | name | Regularizer class name | L2 | Currently support`L1`,`L2`, see[ppocr/optimizer/regularizer.py](../../ppocr/optimizer/regularizer.py) | | factor | Learning rate decay coefficient | 0.00004 | \ | ### Architecture ([ppocr/modeling](../../ppocr/modeling)) In PaddleOCR, the network is divided into four stages: Transform, Backbone, Neck and Head | Parameter | Use | Defaults | Note | | :---------------------: | :---------------------: | :--------------: | :--------------------: | | model_type | Network Type | rec | Currently support`rec`,`det`,`cls` | | algorithm | Model name | CRNN | See [algorithm_overview](./algorithm_overview.md) for the support list | | **Transform** | Set the transformation method | - | Currently only recognition algorithms are supported, see [ppocr/modeling/transform](../../ppocr/modeling/transform) for details | | name | Transformation class name | TPS | Currently supports `TPS` | | num_fiducial | Number of TPS control points | 20 | Ten on the top and bottom | | loc_lr | Localization network learning rate | 0.1 | \ | | model_name | Localization network size | small | Currently support`small`,`large` | | **Backbone** | Set the network backbone class name | - | see [ppocr/modeling/backbones](../../ppocr/modeling/backbones) | | name | backbone class name | ResNet | Currently support`MobileNetV3`,`ResNet` | | layers | resnet layers | 34 | Currently support18,34,50,101,152,200 | | model_name | MobileNetV3 network size | small | Currently support`small`,`large` | | **Neck** | Set network neck | - | see[ppocr/modeling/necks](../../ppocr/modeling/necks) | | name | neck class name | SequenceEncoder | Currently support`SequenceEncoder`,`DBFPN` | | encoder_type | SequenceEncoder encoder type | rnn | Currently support`reshape`,`fc`,`rnn` | | hidden_size | rnn number of internal units | 48 | \ | | out_channels | Number of DBFPN output channels | 256 | \ | | **Head** | Set the network head | - | see[ppocr/modeling/heads](../../ppocr/modeling/heads) | | name | head class name | CTCHead | Currently support`CTCHead`,`DBHead`,`ClsHead` | | fc_decay | CTCHead regularization coefficient | 0.0004 | \ | | k | DBHead binarization coefficient | 50 | \ | | class_dim | ClsHead output category number | 2 | \ | ### Loss ([ppocr/losses](../../ppocr/losses)) | Parameter | Use | Defaults | Note | | :---------------------: | :---------------------: | :--------------: | :--------------------: | | name | loss class name | CTCLoss | Currently support`CTCLoss`,`DBLoss`,`ClsLoss` | | balance_loss | Whether to balance the number of positive and negative samples in DBLossloss (using OHEM) | True | \ | | ohem_ratio | The negative and positive sample ratio of OHEM in DBLossloss | 3 | \ | | main_loss_type | The loss used by shrink_map in DBLossloss | DiceLoss | Currently support`DiceLoss`,`BCELoss` | | alpha | The coefficient of shrink_map_loss in DBLossloss | 5 | \ | | beta | The coefficient of threshold_map_loss in DBLossloss | 10 | \ | ### PostProcess ([ppocr/postprocess](../../ppocr/postprocess)) | Parameter | Use | Defaults | Note | | :---------------------: | :---------------------: | :--------------: | :--------------------: | | name | Post-processing class name | CTCLabelDecode | Currently support`CTCLoss`,`AttnLabelDecode`,`DBPostProcess`,`ClsPostProcess` | | thresh | The threshold for binarization of the segmentation map in DBPostProcess | 0.3 | \ | | box_thresh | The threshold for filtering output boxes in DBPostProcess. Boxes below this threshold will not be output | 0.7 | \ | | max_candidates | The maximum number of text boxes output in DBPostProcess | 1000 | | | unclip_ratio | The unclip ratio of the text box in DBPostProcess | 2.0 | \ | ### Metric ([ppocr/metrics](../../ppocr/metrics)) | Parameter | Use | Defaults | Note | | :---------------------: | :---------------------: | :--------------: | :--------------------: | | name | Metric method name | CTCLabelDecode | Currently support`DetMetric`,`RecMetric`,`ClsMetric` | | main_indicator | Main indicators, used to select the best model | acc | For the detection method is hmean, the recognition and classification method is acc | ### Dataset ([ppocr/data](../../ppocr/data)) | Parameter | Use | Defaults | Note | | :---------------------: | :---------------------: | :--------------: | :--------------------: | | **dataset** | Return one sample per iteration | - | - | | name | dataset class name | SimpleDataSet | Currently support`SimpleDataSet`,`LMDBDataSet` | | data_dir | Image folder path | ./train_data | \ | | label_file_list | Groundtruth file path | ["./train_data/train_list.txt"] | This parameter is not required when dataset is LMDBDataSet | | ratio_list | Ratio of data set | [1.0] | If there are two train_lists in label_file_list and ratio_list is [0.4,0.6], 40% will be sampled from train_list1, and 60% will be sampled from train_list2 to combine the entire dataset | | transforms | List of methods to transform images and labels | [DecodeImage,CTCLabelEncode,RecResizeImg,KeepKeys] | see[ppocr/data/imaug](../../ppocr/data/imaug) | | **loader** | dataloader related | - | | | shuffle | Does each epoch disrupt the order of the data set | True | \ | | batch_size_per_card | Single card batch size during training | 256 | \ | | drop_last | Whether to discard the last incomplete mini-batch because the number of samples in the data set cannot be divisible by batch_size | True | \ | | num_workers | The number of sub-processes used to load data, if it is 0, the sub-process is not started, and the data is loaded in the main process | 8 | \ | ## 3. Multilingual Config File Generation PaddleOCR currently supports 80 (except Chinese) language recognition. A multi-language configuration file template is provided under the path `configs/rec/multi_languages`: [rec_multi_language_lite_train.yml](../../configs/rec/multi_language/rec_multi_language_lite_train.yml)。 There are two ways to create the required configuration file:: 1. Automatically generated by script [generate_multi_language_configs.py](../../configs/rec/multi_language/generate_multi_language_configs.py) Can help you generate configuration files for multi-language models - Take Italian as an example, if your data is prepared in the following format: ``` |-train_data |- it_train.txt # train_set label |- it_val.txt # val_set label |- data |- word_001.jpg |- word_002.jpg |- word_003.jpg | ... ``` You can use the default parameters to generate a configuration file: ```bash # The code needs to be run in the specified directory cd PaddleOCR/configs/rec/multi_language/ # Set the configuration file of the language to be generated through the -l or --language parameter. # This command will write the default parameters into the configuration file python3 generate_multi_language_configs.py -l it ``` - If your data is placed in another location, or you want to use your own dictionary, you can generate the configuration file by specifying the relevant parameters: ```bash # -l or --language field is required # --train to modify the training set # --val to modify the validation set # --data_dir to modify the data set directory # --dict to modify the dict path # -o to modify the corresponding default parameters cd PaddleOCR/configs/rec/multi_language/ python3 generate_multi_language_configs.py -l it \ # language --train {path/of/train_label.txt} \ # path of train_label --val {path/of/val_label.txt} \ # path of val_label --data_dir {train_data/path} \ # root directory of training data --dict {path/of/dict} \ # path of dict -o Global.use_gpu=False # whether to use gpu ... ``` Italian is made up of Latin letters, so after executing the command, you will get the rec_latin_lite_train.yml. 2. Manually modify the configuration file You can also manually modify the following fields in the template: ``` Global: use_gpu: True epoch_num: 500 ... character_dict_path: {path/of/dict} # path of dict Train: dataset: name: SimpleDataSet data_dir: train_data/ # root directory of training data label_file_list: ["./train_data/train_list.txt"] # train label path ... Eval: dataset: name: SimpleDataSet data_dir: train_data/ # root directory of val data label_file_list: ["./train_data/val_list.txt"] # val label path ... ``` Currently, the multi-language algorithms supported by PaddleOCR are: | Configuration file | Algorithm name | backbone | trans | seq | pred | language | | :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: | | rec_chinese_cht_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | chinese traditional | | rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | English(Case sensitive) | | rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | French | | rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | German | | rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Japanese | | rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Korean | | rec_latin_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | Latin | | rec_arabic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | arabic | | rec_cyrillic_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | cyrillic | | rec_devanagari_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | devanagari | For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations) The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods. * [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA),Extraction code:frgi. * [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)