Global: use_gpu: true epoch_num: 500 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/rec_en_number_lite save_epoch_step: 3 # evaluation is run every 5000 iterations after the 4000th iteration eval_batch_step: [0, 2000] # if pretrained_model is saved in static mode, load_static_weights must set to True cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: # for data or label process character_dict_path: ppocr/utils/ic15_dict.txt character_type: ch max_text_length: 25 infer_mode: False use_space_char: False Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: Cosine learning_rate: 0.001 regularizer: name: 'L2' factor: 0.00001 Architecture: model_type: rec algorithm: CRNN Transform: Backbone: name: MobileNetV3 scale: 0.5 model_name: small small_stride: [1, 2, 2, 2] Neck: name: SequenceEncoder encoder_type: rnn hidden_size: 48 Head: name: CTCHead fc_decay: 0.00001 Loss: name: CTCLoss PostProcess: name: CTCLabelDecode Metric: name: RecMetric main_indicator: acc Train: dataset: name: SimpleDataSet data_dir: ./train_data/ label_file_list: ["./train_data/train_list.txt"] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - RecAug: - CTCLabelEncode: # Class handling label - RecResizeImg: image_shape: [3, 32, 320] - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 256 drop_last: True num_workers: 8 Eval: dataset: name: SimpleDataSet data_dir: ./train_data/ label_file_list: ["./train_data/eval_list.txt"] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - CTCLabelEncode: # Class handling label - RecResizeImg: image_shape: [3, 32, 320] - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 256 num_workers: 8