# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import json import cv2 import numpy as np from copy import deepcopy from PIL import Image import paddle from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForRelationExtraction # relative reference from vqa_utils import parse_args, get_image_file_list, draw_re_results from infer_ser_e2e import SerPredictor def make_input(ser_input, ser_result, max_seq_len=512): entities_labels = {'HEADER': 0, 'QUESTION': 1, 'ANSWER': 2} entities = ser_input['entities'][0] assert len(entities) == len(ser_result) # entities start = [] end = [] label = [] entity_idx_dict = {} for i, (res, entity) in enumerate(zip(ser_result, entities)): if res['pred'] == 'O': continue entity_idx_dict[len(start)] = i start.append(entity['start']) end.append(entity['end']) label.append(entities_labels[res['pred']]) entities = dict(start=start, end=end, label=label) # relations head = [] tail = [] for i in range(len(entities["label"])): for j in range(len(entities["label"])): if entities["label"][i] == 1 and entities["label"][j] == 2: head.append(i) tail.append(j) relations = dict(head=head, tail=tail) batch_size = ser_input["input_ids"].shape[0] entities_batch = [] relations_batch = [] for b in range(batch_size): entities_batch.append(entities) relations_batch.append(relations) ser_input['entities'] = entities_batch ser_input['relations'] = relations_batch ser_input.pop('segment_offset_id') return ser_input, entity_idx_dict class SerReSystem(object): def __init__(self, args): self.ser_engine = SerPredictor(args) self.tokenizer = LayoutXLMTokenizer.from_pretrained( args.re_model_name_or_path) self.model = LayoutXLMForRelationExtraction.from_pretrained( args.re_model_name_or_path) self.model.eval() def __call__(self, img): ser_result, ser_inputs = self.ser_engine(img) re_input, entity_idx_dict = make_input(ser_inputs, ser_result) re_result = self.model(**re_input) pred_relations = re_result['pred_relations'][0] # 进行 relations 到 ocr信息的转换 result = [] used_tail_id = [] for relation in pred_relations: if relation['tail_id'] in used_tail_id: continue used_tail_id.append(relation['tail_id']) ocr_info_head = ser_result[entity_idx_dict[relation['head_id']]] ocr_info_tail = ser_result[entity_idx_dict[relation['tail_id']]] result.append((ocr_info_head, ocr_info_tail)) return result if __name__ == "__main__": args = parse_args() os.makedirs(args.output_dir, exist_ok=True) # get infer img list infer_imgs = get_image_file_list(args.infer_imgs) # loop for infer ser_re_engine = SerReSystem(args) with open( os.path.join(args.output_dir, "infer_results.txt"), "w", encoding='utf-8') as fout: for idx, img_path in enumerate(infer_imgs): save_img_path = os.path.join( args.output_dir, os.path.splitext(os.path.basename(img_path))[0] + "_re.jpg") print("process: [{}/{}], save result to {}".format( idx, len(infer_imgs), save_img_path)) img = cv2.imread(img_path) result = ser_re_engine(img) fout.write(img_path + "\t" + json.dumps( { "result": result, }, ensure_ascii=False) + "\n") img_res = draw_re_results(img, result) cv2.imwrite(save_img_path, img_res)