# SVTR
- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
- [3.1 Training](#3-1)
- [3.2 Evaluation](#3-2)
- [3.3 Prediction](#3-3)
- [4. Inference and Deployment](#4)
- [4.1 Python Inference](#4-1)
- [4.2 C++ Inference](#4-2)
- [4.3 Serving](#4-3)
- [4.4 More](#4-4)
- [5. FAQ](#5)
## 1. Introduction
Paper:
> [SVTR: Scene Text Recognition with a Single Visual Model](https://arxiv.org/abs/2205.00159)
> Yongkun Du and Zhineng Chen and Caiyan Jia Xiaoting Yin and Tianlun Zheng and Chenxia Li and Yuning Du and Yu-Gang Jiang
> IJCAI, 2022
The accuracy (%) and model files of SVTR on the public dataset of scene text recognition are as follows:
* Chinese dataset from [Chinese Benckmark](https://arxiv.org/abs/2112.15093) , and the Chinese training evaluation strategy of SVTR follows the paper.
| Model |IC13
857 | SVT |IIIT5k
3000 |IC15
1811| SVTP |CUTE80 | Avg_6 |IC15
2077 |IC13
1015 |IC03
867|IC03
860|Avg_10 | Chinese
scene_test| Download link |
|:----------:|:------:|:-----:|:---------:|:------:|:-----:|:-----:|:-----:|:-------:|:-------:|:-----:|:-----:|:---------------------------------------------:|:-----:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| SVTR Tiny | 96.85 | 91.34 | 94.53 | 83.99 | 85.43 | 89.24 | 90.87 | 80.55 | 95.37 | 95.27 | 95.70 | 90.13 | 67.90 | [English](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) / [Chinese](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_ch_train.tar) |
| SVTR Small | 95.92 | 93.04 | 95.03 | 84.70 | 87.91 | 92.01 | 91.63 | 82.72 | 94.88 | 96.08 | 96.28 | 91.02 | 69.00 | [English](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_small_none_ctc_en_train.tar) / [Chinese](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_small_none_ctc_ch_train.tar) |
| SVTR Base | 97.08 | 91.50 | 96.03 | 85.20 | 89.92 | 91.67 | 92.33 | 83.73 | 95.66 | 95.62 | 95.81 | 91.61 | 71.40 | [English](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_base_none_ctc_en_train.tar) / - |
| SVTR Large | 97.20 | 91.65 | 96.30 | 86.58 | 88.37 | 95.14 | 92.82 | 84.54 | 96.35 | 96.54 | 96.74 | 92.24 | 72.10 | [English](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_large_none_ctc_en_train.tar) / [Chinese](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_large_none_ctc_ch_train.tar) |
## 2. Environment
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
#### Dataset Preparation
[English dataset download](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here)
[Chinese dataset download](https://github.com/fudanvi/benchmarking-chinese-text-recognition#download)
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
```
#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_svtrnet.yml
#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_svtrnet.yml
```
Evaluation:
You can download the model files and configuration files provided by `SVTR`: [download link](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar), take `SVTR-T` as an example, using the following command to evaluate:
```
# Download the tar archive containing the model files and configuration files of SVTR-T and extract it
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar && tar xf rec_svtr_tiny_none_ctc_en_train.tar
# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c ./rec_svtr_tiny_none_ctc_en_train/rec_svtr_tiny_6local_6global_stn_en.yml -o Global.pretrained_model=./rec_svtr_tiny_none_ctc_en_train/best_accuracy
```
Prediction:
```
python3 tools/infer_rec.py -c ./rec_svtr_tiny_none_ctc_en_train/rec_svtr_tiny_6local_6global_stn_en.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./rec_svtr_tiny_none_ctc_en_train/best_accuracy
```
## 4. Inference and Deployment
### 4.1 Python Inference
First, the model saved during the SVTR text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar) ), you can use the following command to convert:
```
python3 tools/export_model.py -c configs/rec/rec_svtrnet.yml -o Global.pretrained_model=./rec_svtr_tiny_none_ctc_en_train/best_accuracy Global.save_inference_dir=./inference/rec_svtr_tiny_stn_en
```
**Note:**
- If you are training the model on your own dataset and have modified the dictionary file, please pay attention to modify the `character_dict_path` in the configuration file to the modified dictionary file.
- If you modified the input size during training, please modify the `infer_shape` corresponding to SVTR in the `tools/export_model.py` file.
After the conversion is successful, there are three files in the directory:
```
/inference/rec_svtr_tiny_stn_en/
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
```
For SVTR text recognition model inference, the following commands can be executed:
```
python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' --rec_model_dir='./inference/rec_svtr_tiny_stn_en/' --rec_algorithm='SVTR' --rec_image_shape='3,64,256' --rec_char_dict_path='./ppocr/utils/ic15_dict.txt'
```
![](../imgs_words_en/word_10.png)
After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows:
The result is as follows:
```shell
Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9999998807907104)
```
### 4.2 C++ Inference
Not supported
### 4.3 Serving
Not supported
### 4.4 More
Not supported
## 5. FAQ
1. Since most of the operators used by `SVTR` are matrix multiplication, in the GPU environment, the speed has an advantage, but in the environment where mkldnn is enabled on the CPU, `SVTR` has no advantage over the optimized convolutional network.
## Citation
```bibtex
@article{Du2022SVTR,
title = {SVTR: Scene Text Recognition with a Single Visual Model},
author = {Du, Yongkun and Chen, Zhineng and Jia, Caiyan and Yin, Xiaoting and Zheng, Tianlun and Li, Chenxia and Du, Yuning and Jiang, Yu-Gang},
booktitle = {IJCAI},
year = {2022},
url = {https://arxiv.org/abs/2205.00159}
}
```