- [Key Information Extraction(KIE)](#key-information-extractionkie) - [1. Quick Use](#1-quick-use) - [2. Model Training](#2-model-training) - [3. Model Evaluation](#3-model-evaluation) - [4. Reference](#4-reference) # Key Information Extraction(KIE) This section provides a tutorial example on how to quickly use, train, and evaluate a key information extraction(KIE) model, [SDMGR](https://arxiv.org/abs/2103.14470), in PaddleOCR. [SDMGR(Spatial Dual-Modality Graph Reasoning)](https://arxiv.org/abs/2103.14470) is a KIE algorithm that classifies each detected text region into predefined categories, such as order ID, invoice number, amount, and etc. ## 1. Quick Use [Wildreceipt dataset](https://paperswithcode.com/dataset/wildreceipt) is used for this tutorial. It contains 1765 photos, with 25 classes, and 50000 text boxes, which can be downloaded by wget: ```shell wget https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/wildreceipt.tar && tar xf wildreceipt.tar ``` Download the pretrained model and predict the result: ```shell cd PaddleOCR/ wget https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/kie_vgg16.tar && tar xf kie_vgg16.tar python3.7 tools/infer_kie.py -c configs/kie/kie_unet_sdmgr.yml -o Global.checkpoints=kie_vgg16/best_accuracy Global.infer_img=../wildreceipt/1.txt ``` The prediction result is saved as `./output/sdmgr_kie/predicts_kie.txt`, and the visualization results are saved in the folder`/output/sdmgr_kie/kie_results/`. The visualization results are shown in the figure below:
## 2. Model Training Create a softlink to the folder, `PaddleOCR/train_data`: ```shell cd PaddleOCR/ && mkdir train_data && cd train_data ln -s ../../wildreceipt ./ ``` The configuration file used for training is `configs/kie/kie_unet_sdmgr.yml`. The default training data path in the configuration file is `train_data/wildreceipt`. After preparing the data, you can execute the model training with the following command: ```shell python3.7 tools/train.py -c configs/kie/kie_unet_sdmgr.yml -o Global.save_model_dir=./output/kie/ ``` ## 3. Model Evaluation After training, you can execute the model evaluation with the following command: ```shell python3.7 tools/eval.py -c configs/kie/kie_unet_sdmgr.yml -o Global.checkpoints=./output/kie/best_accuracy ``` ## 4. Reference ```bibtex @misc{sun2021spatial, title={Spatial Dual-Modality Graph Reasoning for Key Information Extraction}, author={Hongbin Sun and Zhanghui Kuang and Xiaoyu Yue and Chenhao Lin and Wayne Zhang}, year={2021}, eprint={2103.14470}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```