# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from paddle import nn from paddlenlp.transformers import LayoutXLMModel, LayoutXLMForTokenClassification, LayoutXLMForRelationExtraction from paddlenlp.transformers import LayoutLMModel, LayoutLMForTokenClassification from paddlenlp.transformers import LayoutLMv2Model, LayoutLMv2ForTokenClassification, LayoutLMv2ForRelationExtraction from paddlenlp.transformers import AutoModel __all__ = ["LayoutXLMForSer", "LayoutLMForSer"] pretrained_model_dict = { LayoutXLMModel: { "base": "layoutxlm-base-uncased", "vi": "layoutxlm-wo-backbone-base-uncased", }, LayoutLMModel: { "base": "layoutlm-base-uncased", }, LayoutLMv2Model: { "base": "layoutlmv2-base-uncased", "vi": "layoutlmv2-wo-backbone-base-uncased", }, } class NLPBaseModel(nn.Layer): def __init__(self, base_model_class, model_class, mode="base", type="ser", pretrained=True, checkpoints=None, **kwargs): super(NLPBaseModel, self).__init__() if checkpoints is not None: # load the trained model self.model = model_class.from_pretrained(checkpoints) else: # load the pretrained-model pretrained_model_name = pretrained_model_dict[base_model_class][ mode] if pretrained is True: base_model = base_model_class.from_pretrained( pretrained_model_name) else: base_model = base_model_class.from_pretrained(pretrained) if type == "ser": self.model = model_class( base_model, num_classes=kwargs["num_classes"], dropout=None) else: self.model = model_class(base_model, dropout=None) self.out_channels = 1 self.use_visual_backbone = True class LayoutLMForSer(NLPBaseModel): def __init__(self, num_classes, pretrained=True, checkpoints=None, mode="base", **kwargs): super(LayoutLMForSer, self).__init__( LayoutLMModel, LayoutLMForTokenClassification, mode, "ser", pretrained, checkpoints, num_classes=num_classes, ) self.use_visual_backbone = False def forward(self, x): x = self.model( input_ids=x[0], bbox=x[1], attention_mask=x[2], token_type_ids=x[3], position_ids=None, output_hidden_states=False) return x class LayoutLMv2ForSer(NLPBaseModel): def __init__(self, num_classes, pretrained=True, checkpoints=None, mode="base", **kwargs): super(LayoutLMv2ForSer, self).__init__( LayoutLMv2Model, LayoutLMv2ForTokenClassification, mode, "ser", pretrained, checkpoints, num_classes=num_classes) if hasattr(self.model.layoutlmv2, "use_visual_backbone" ) and self.model.layoutlmv2.use_visual_backbone is False: self.use_visual_backbone = False def forward(self, x): if self.use_visual_backbone is True: image = x[4] else: image = None x = self.model( input_ids=x[0], bbox=x[1], attention_mask=x[2], token_type_ids=x[3], image=image, position_ids=None, head_mask=None, labels=None) if self.training: res = {"backbone_out": x[0]} res.update(x[1]) return res else: return x class LayoutXLMForSer(NLPBaseModel): def __init__(self, num_classes, pretrained=True, checkpoints=None, mode="base", **kwargs): super(LayoutXLMForSer, self).__init__( LayoutXLMModel, LayoutXLMForTokenClassification, mode, "ser", pretrained, checkpoints, num_classes=num_classes) if hasattr(self.model.layoutxlm, "use_visual_backbone" ) and self.model.layoutxlm.use_visual_backbone is False: self.use_visual_backbone = False def forward(self, x): if self.use_visual_backbone is True: image = x[4] else: image = None x = self.model( input_ids=x[0], bbox=x[1], attention_mask=x[2], token_type_ids=x[3], image=image, position_ids=None, head_mask=None, labels=None) if self.training: res = {"backbone_out": x[0]} res.update(x[1]) return res else: return x class LayoutLMv2ForRe(NLPBaseModel): def __init__(self, pretrained=True, checkpoints=None, mode="base", **kwargs): super(LayoutLMv2ForRe, self).__init__( LayoutLMv2Model, LayoutLMv2ForRelationExtraction, mode, "re", pretrained, checkpoints) if hasattr(self.model.layoutlmv2, "use_visual_backbone" ) and self.model.layoutlmv2.use_visual_backbone is False: self.use_visual_backbone = False def forward(self, x): x = self.model( input_ids=x[0], bbox=x[1], attention_mask=x[2], token_type_ids=x[3], image=x[4], position_ids=None, head_mask=None, labels=None, entities=x[5], relations=x[6]) return x class LayoutXLMForRe(NLPBaseModel): def __init__(self, pretrained=True, checkpoints=None, mode="base", **kwargs): super(LayoutXLMForRe, self).__init__( LayoutXLMModel, LayoutXLMForRelationExtraction, mode, "re", pretrained, checkpoints) if hasattr(self.model.layoutxlm, "use_visual_backbone" ) and self.model.layoutxlm.use_visual_backbone is False: self.use_visual_backbone = False def forward(self, x): if self.use_visual_backbone is True: image = x[4] else: image = None x = self.model( input_ids=x[0], bbox=x[1], attention_mask=x[2], token_type_ids=x[3], image=image, position_ids=None, head_mask=None, labels=None, entities=x[5], relations=x[6]) return x