# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import json import cv2 import numpy as np from copy import deepcopy from PIL import Image import paddle from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification # relative reference from utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps, build_ocr_engine from utils import pad_sentences, split_page, preprocess, postprocess, merge_preds_list_with_ocr_info def trans_poly_to_bbox(poly): x1 = np.min([p[0] for p in poly]) x2 = np.max([p[0] for p in poly]) y1 = np.min([p[1] for p in poly]) y2 = np.max([p[1] for p in poly]) return [x1, y1, x2, y2] def parse_ocr_info_for_ser(ocr_result): ocr_info = [] for res in ocr_result: ocr_info.append({ "text": res[1][0], "bbox": trans_poly_to_bbox(res[0]), "poly": res[0], }) return ocr_info @paddle.no_grad() def infer(args): os.makedirs(args.output_dir, exist_ok=True) # init token and model tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path) model = LayoutXLMForTokenClassification.from_pretrained( args.model_name_or_path) model.eval() label2id_map, id2label_map = get_bio_label_maps(args.label_map_path) label2id_map_for_draw = dict() for key in label2id_map: if key.startswith("I-"): label2id_map_for_draw[key] = label2id_map["B" + key[1:]] else: label2id_map_for_draw[key] = label2id_map[key] # get infer img list infer_imgs = get_image_file_list(args.infer_imgs) ocr_engine = build_ocr_engine(args.ocr_rec_model_dir, args.ocr_det_model_dir) # loop for infer with open(os.path.join(args.output_dir, "infer_results.txt"), "w") as fout: for idx, img_path in enumerate(infer_imgs): print("process: [{}/{}]".format(idx, len(infer_imgs), img_path)) img = cv2.imread(img_path) ocr_result = ocr_engine.ocr(img_path, cls=False) ocr_info = parse_ocr_info_for_ser(ocr_result) inputs = preprocess( tokenizer=tokenizer, ori_img=img, ocr_info=ocr_info, max_seq_len=args.max_seq_length) outputs = model( input_ids=inputs["input_ids"], bbox=inputs["bbox"], image=inputs["image"], token_type_ids=inputs["token_type_ids"], attention_mask=inputs["attention_mask"]) preds = outputs[0] preds = postprocess(inputs["attention_mask"], preds, id2label_map) ocr_info = merge_preds_list_with_ocr_info( ocr_info, inputs["segment_offset_id"], preds, label2id_map_for_draw) fout.write(img_path + "\t" + json.dumps( { "ocr_info": ocr_info, }, ensure_ascii=False) + "\n") img_res = draw_ser_results(img, ocr_info) cv2.imwrite( os.path.join(args.output_dir, os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg"), img_res) return if __name__ == "__main__": args = parse_args() infer(args)