# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..'))) sys.path.append( os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools'))) import yaml import paddle import paddle.distributed as dist paddle.seed(2) from ppocr.data import build_dataloader from ppocr.modeling.architectures import build_model from ppocr.losses import build_loss from ppocr.optimizer import build_optimizer from ppocr.postprocess import build_post_process from ppocr.metrics import build_metric from ppocr.utils.save_load import load_model import tools.program as program import paddleslim from paddleslim.dygraph.quant import QAT import numpy as np dist.get_world_size() class PACT(paddle.nn.Layer): def __init__(self): super(PACT, self).__init__() alpha_attr = paddle.ParamAttr( name=self.full_name() + ".pact", initializer=paddle.nn.initializer.Constant(value=20), learning_rate=1.0, regularizer=paddle.regularizer.L2Decay(2e-5)) self.alpha = self.create_parameter( shape=[1], attr=alpha_attr, dtype='float32') def forward(self, x): out_left = paddle.nn.functional.relu(x - self.alpha) out_right = paddle.nn.functional.relu(-self.alpha - x) x = x - out_left + out_right return x quant_config = { # weight preprocess type, default is None and no preprocessing is performed. 'weight_preprocess_type': None, # activation preprocess type, default is None and no preprocessing is performed. 'activation_preprocess_type': None, # weight quantize type, default is 'channel_wise_abs_max' 'weight_quantize_type': 'channel_wise_abs_max', # activation quantize type, default is 'moving_average_abs_max' 'activation_quantize_type': 'moving_average_abs_max', # weight quantize bit num, default is 8 'weight_bits': 8, # activation quantize bit num, default is 8 'activation_bits': 8, # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8' 'dtype': 'int8', # window size for 'range_abs_max' quantization. default is 10000 'window_size': 10000, # The decay coefficient of moving average, default is 0.9 'moving_rate': 0.9, # for dygraph quantization, layers of type in quantizable_layer_type will be quantized 'quantizable_layer_type': ['Conv2D', 'Linear'], } def sample_generator(loader): def __reader__(): for indx, data in enumerate(loader): images = np.array(data[0]) yield images return __reader__ def main(config, device, logger, vdl_writer): # init dist environment if config['Global']['distributed']: dist.init_parallel_env() global_config = config['Global'] # build dataloader config['Train']['loader']['num_workers'] = 0 train_dataloader = build_dataloader(config, 'Train', device, logger) if config['Eval']: config['Eval']['loader']['num_workers'] = 0 valid_dataloader = build_dataloader(config, 'Eval', device, logger) else: valid_dataloader = None paddle.enable_static() place = paddle.CPUPlace() exe = paddle.static.Executor(place) if 'inference_model' in global_config.keys(): # , 'inference_model'): inference_model_dir = global_config['inference_model'] else: inference_model_dir = os.path.dirname(global_config['pretrained_model']) if not (os.path.exists(os.path.join(inference_model_dir, "inference.pdmodel")) and \ os.path.exists(os.path.join(inference_model_dir, "inference.pdiparams")) ): raise ValueError( "Please set inference model dir in Global.inference_model or Global.pretrained_model for post-quantazition" ) paddleslim.quant.quant_post_static( executor=exe, model_dir=inference_model_dir, model_filename='inference.pdmodel', params_filename='inference.pdiparams', quantize_model_path=global_config['save_inference_dir'], sample_generator=sample_generator(train_dataloader), save_model_filename='inference.pdmodel', save_params_filename='inference.pdiparams', batch_size=1, batch_nums=None) if __name__ == '__main__': config, device, logger, vdl_writer = program.preprocess(is_train=True) main(config, device, logger, vdl_writer)