# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from PIL import Image __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, __dir__) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) os.environ["FLAGS_allocator_strategy"] = 'auto_growth' import cv2 import numpy as np import math import time import traceback import paddle import tools.infer.utility as utility from ppocr.postprocess import build_post_process from ppocr.utils.logging import get_logger from ppocr.utils.utility import get_image_file_list, check_and_read_gif logger = get_logger() class TextSR(object): def __init__(self, args): self.sr_image_shape = [int(v) for v in args.sr_image_shape.split(",")] self.sr_batch_num = args.sr_batch_num self.predictor, self.input_tensor, self.output_tensors, self.config = \ utility.create_predictor(args, 'sr', logger) self.benchmark = args.benchmark if args.benchmark: import auto_log pid = os.getpid() gpu_id = utility.get_infer_gpuid() self.autolog = auto_log.AutoLogger( model_name="sr", model_precision=args.precision, batch_size=args.sr_batch_num, data_shape="dynamic", save_path=None, #args.save_log_path, inference_config=self.config, pids=pid, process_name=None, gpu_ids=gpu_id if args.use_gpu else None, time_keys=[ 'preprocess_time', 'inference_time', 'postprocess_time' ], warmup=0, logger=logger) def resize_norm_img(self, img): imgC, imgH, imgW = self.sr_image_shape img = img.resize((imgW // 2, imgH // 2), Image.BICUBIC) img_numpy = np.array(img).astype("float32") img_numpy = img_numpy.transpose((2, 0, 1)) / 255 return img_numpy def __call__(self, img_list): img_num = len(img_list) batch_num = self.sr_batch_num st = time.time() st = time.time() all_result = [] * img_num if self.benchmark: self.autolog.times.start() for beg_img_no in range(0, img_num, batch_num): end_img_no = min(img_num, beg_img_no + batch_num) norm_img_batch = [] imgC, imgH, imgW = self.sr_image_shape for ino in range(beg_img_no, end_img_no): norm_img = self.resize_norm_img(img_list[ino]) norm_img = norm_img[np.newaxis, :] norm_img_batch.append(norm_img) norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = norm_img_batch.copy() if self.benchmark: self.autolog.times.stamp() self.input_tensor.copy_from_cpu(norm_img_batch) self.predictor.run() outputs = [] for output_tensor in self.output_tensors: output = output_tensor.copy_to_cpu() outputs.append(output) if len(outputs) != 1: preds = outputs else: preds = outputs[0] all_result.append(outputs) if self.benchmark: self.autolog.times.end(stamp=True) return all_result, time.time() - st def main(args): image_file_list = get_image_file_list(args.image_dir) text_recognizer = TextSR(args) valid_image_file_list = [] img_list = [] # warmup 2 times if args.warmup: img = np.random.uniform(0, 255, [16, 64, 3]).astype(np.uint8) for i in range(2): res = text_recognizer([img] * int(args.sr_batch_num)) for image_file in image_file_list: img, flag = check_and_read_gif(image_file) if not flag: img = Image.open(image_file).convert("RGB") if img is None: logger.info("error in loading image:{}".format(image_file)) continue valid_image_file_list.append(image_file) img_list.append(img) try: preds, _ = text_recognizer(img_list) for beg_no in range(len(preds)): sr_img = preds[beg_no][1] lr_img = preds[beg_no][0] for i in (range(sr_img.shape[0])): fm_sr = (sr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8) fm_lr = (lr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8) img_name_pure = os.path.split(valid_image_file_list[ beg_no * args.sr_batch_num + i])[-1] cv2.imwrite("infer_result/sr_{}".format(img_name_pure), fm_sr[:, :, ::-1]) logger.info("The visualized image saved in infer_result/sr_{}". format(img_name_pure)) except Exception as E: logger.info(traceback.format_exc()) logger.info(E) exit() if args.benchmark: text_recognizer.autolog.report() if __name__ == "__main__": main(utility.parse_args())