# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import imghdr import cv2 import random import numpy as np import paddle def print_dict(d, logger, delimiter=0): """ Recursively visualize a dict and indenting acrrording by the relationship of keys. """ for k, v in sorted(d.items()): if isinstance(v, dict): logger.info("{}{} : ".format(delimiter * " ", str(k))) print_dict(v, logger, delimiter + 4) elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict): logger.info("{}{} : ".format(delimiter * " ", str(k))) for value in v: print_dict(value, logger, delimiter + 4) else: logger.info("{}{} : {}".format(delimiter * " ", k, v)) def get_check_global_params(mode): check_params = ['use_gpu', 'max_text_length', 'image_shape', \ 'image_shape', 'character_type', 'loss_type'] if mode == "train_eval": check_params = check_params + [ \ 'train_batch_size_per_card', 'test_batch_size_per_card'] elif mode == "test": check_params = check_params + ['test_batch_size_per_card'] return check_params def get_image_file_list(img_file): imgs_lists = [] if img_file is None or not os.path.exists(img_file): raise Exception("not found any img file in {}".format(img_file)) img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'GIF'} if os.path.isfile(img_file) and imghdr.what(img_file) in img_end: imgs_lists.append(img_file) elif os.path.isdir(img_file): for single_file in os.listdir(img_file): file_path = os.path.join(img_file, single_file) if os.path.isfile(file_path) and imghdr.what(file_path) in img_end: imgs_lists.append(file_path) if len(imgs_lists) == 0: raise Exception("not found any img file in {}".format(img_file)) imgs_lists = sorted(imgs_lists) return imgs_lists def check_and_read_gif(img_path): if os.path.basename(img_path)[-3:] in ['gif', 'GIF']: gif = cv2.VideoCapture(img_path) ret, frame = gif.read() if not ret: logger = logging.getLogger('ppocr') logger.info("Cannot read {}. This gif image maybe corrupted.") return None, False if len(frame.shape) == 2 or frame.shape[-1] == 1: frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) imgvalue = frame[:, :, ::-1] return imgvalue, True return None, False def load_vqa_bio_label_maps(label_map_path): with open(label_map_path, "r", encoding='utf-8') as fin: lines = fin.readlines() lines = [line.strip() for line in lines] if "O" not in lines: lines.insert(0, "O") labels = [] for line in lines: if line == "O": labels.append("O") else: labels.append("B-" + line) labels.append("I-" + line) label2id_map = {label: idx for idx, label in enumerate(labels)} id2label_map = {idx: label for idx, label in enumerate(labels)} return label2id_map, id2label_map def set_seed(seed=1024): random.seed(seed) np.random.seed(seed) paddle.seed(seed) class AverageMeter: def __init__(self): self.reset() def reset(self): """reset""" self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): """update""" self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count