# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import numpy as np import paddle.fluid as fluid __all__ = ['eval_det_run'] import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) from ppocr.utils.utility import create_module from .eval_det_iou import DetectionIoUEvaluator import json from copy import deepcopy import cv2 from ppocr.data.reader_main import reader_main import os def cal_det_res(exe, config, eval_info_dict): global_params = config['Global'] save_res_path = global_params['save_res_path'] postprocess_params = deepcopy(config["PostProcess"]) postprocess_params.update(global_params) postprocess = create_module(postprocess_params['function']) \ (params=postprocess_params) if not os.path.exists(os.path.dirname(save_res_path)): os.makedirs(os.path.dirname(save_res_path)) with open(save_res_path, "wb") as fout: tackling_num = 0 for data in eval_info_dict['reader'](): img_num = len(data) tackling_num = tackling_num + img_num logger.info("test tackling num:%d", tackling_num) img_list = [] ratio_list = [] img_name_list = [] for ino in range(img_num): img_list.append(data[ino][0]) ratio_list.append(data[ino][1]) img_name_list.append(data[ino][2]) try: img_list = np.concatenate(img_list, axis=0) except: err = "concatenate error usually caused by different input image shapes.\n \ Please set \"test_batch_size_per_card\" in main yml as 1\n \ or add \"test_image_shape: [h, w]\" in reader yml for EvalReader." raise Exception(err) outs = exe.run(eval_info_dict['program'], \ feed={'image': img_list}, \ fetch_list=eval_info_dict['fetch_varname_list']) outs_dict = {} for tno in range(len(outs)): fetch_name = eval_info_dict['fetch_name_list'][tno] fetch_value = np.array(outs[tno]) outs_dict[fetch_name] = fetch_value dt_boxes_list = postprocess(outs_dict, ratio_list) for ino in range(img_num): dt_boxes = dt_boxes_list[ino] img_name = img_name_list[ino] dt_boxes_json = [] for box in dt_boxes: tmp_json = {"transcription": ""} tmp_json['points'] = box.tolist() dt_boxes_json.append(tmp_json) otstr = img_name + "\t" + json.dumps(dt_boxes_json) + "\n" fout.write(otstr.encode()) return def load_label_infor(label_file_path, do_ignore=False): img_name_label_dict = {} with open(label_file_path, "rb") as fin: lines = fin.readlines() for line in lines: substr = line.decode().strip("\n").split("\t") bbox_infor = json.loads(substr[1]) bbox_num = len(bbox_infor) for bno in range(bbox_num): text = bbox_infor[bno]['transcription'] ignore = False if text == "###" and do_ignore: ignore = True bbox_infor[bno]['ignore'] = ignore img_name_label_dict[os.path.basename(substr[0])] = bbox_infor return img_name_label_dict def cal_det_metrics(gt_label_path, save_res_path): """ calculate the detection metrics Args: gt_label_path(string): The groundtruth detection label file path save_res_path(string): The saved predicted detection label path return: claculated metrics including Hmean、precision and recall """ evaluator = DetectionIoUEvaluator() gt_label_infor = load_label_infor(gt_label_path, do_ignore=True) dt_label_infor = load_label_infor(save_res_path) results = [] for img_name in gt_label_infor: gt_label = gt_label_infor[img_name] if img_name not in dt_label_infor: dt_label = [] else: dt_label = dt_label_infor[img_name] result = evaluator.evaluate_image(gt_label, dt_label) results.append(result) methodMetrics = evaluator.combine_results(results) return methodMetrics def eval_det_run(exe, config, eval_info_dict, mode): cal_det_res(exe, config, eval_info_dict) save_res_path = config['Global']['save_res_path'] if mode == "eval": gt_label_path = config['EvalReader']['label_file_path'] metrics = cal_det_metrics(gt_label_path, save_res_path) else: gt_label_path = config['TestReader']['label_file_path'] do_eval = config['TestReader']['do_eval'] if do_eval: metrics = cal_det_metrics(gt_label_path, save_res_path) else: metrics = {} return metrics