# -*- coding: utf-8 -*- # @Time : 2019/8/23 21:59 # @Author : zhoujun import json import pathlib import time import os import glob import cv2 import yaml from typing import Mapping import matplotlib.pyplot as plt import numpy as np from argparse import ArgumentParser, RawDescriptionHelpFormatter def _check_image_file(path): img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'pdf'} return any([path.lower().endswith(e) for e in img_end]) def get_image_file_list(img_file): imgs_lists = [] if img_file is None or not os.path.exists(img_file): raise Exception("not found any img file in {}".format(img_file)) img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'pdf'} if os.path.isfile(img_file) and _check_image_file(img_file): imgs_lists.append(img_file) elif os.path.isdir(img_file): for single_file in os.listdir(img_file): file_path = os.path.join(img_file, single_file) if os.path.isfile(file_path) and _check_image_file(file_path): imgs_lists.append(file_path) if len(imgs_lists) == 0: raise Exception("not found any img file in {}".format(img_file)) imgs_lists = sorted(imgs_lists) return imgs_lists def setup_logger(log_file_path: str=None): import logging logging._warn_preinit_stderr = 0 logger = logging.getLogger('DBNet.paddle') formatter = logging.Formatter( '%(asctime)s %(name)s %(levelname)s: %(message)s') ch = logging.StreamHandler() ch.setFormatter(formatter) logger.addHandler(ch) if log_file_path is not None: file_handle = logging.FileHandler(log_file_path) file_handle.setFormatter(formatter) logger.addHandler(file_handle) logger.setLevel(logging.DEBUG) return logger # --exeTime def exe_time(func): def newFunc(*args, **args2): t0 = time.time() back = func(*args, **args2) print("{} cost {:.3f}s".format(func.__name__, time.time() - t0)) return back return newFunc def load(file_path: str): file_path = pathlib.Path(file_path) func_dict = {'.txt': _load_txt, '.json': _load_json, '.list': _load_txt} assert file_path.suffix in func_dict return func_dict[file_path.suffix](file_path) def _load_txt(file_path: str): with open(file_path, 'r', encoding='utf8') as f: content = [ x.strip().strip('\ufeff').strip('\xef\xbb\xbf') for x in f.readlines() ] return content def _load_json(file_path: str): with open(file_path, 'r', encoding='utf8') as f: content = json.load(f) return content def save(data, file_path): file_path = pathlib.Path(file_path) func_dict = {'.txt': _save_txt, '.json': _save_json} assert file_path.suffix in func_dict return func_dict[file_path.suffix](data, file_path) def _save_txt(data, file_path): """ 将一个list的数组写入txt文件里 :param data: :param file_path: :return: """ if not isinstance(data, list): data = [data] with open(file_path, mode='w', encoding='utf8') as f: f.write('\n'.join(data)) def _save_json(data, file_path): with open(file_path, 'w', encoding='utf-8') as json_file: json.dump(data, json_file, ensure_ascii=False, indent=4) def show_img(imgs: np.ndarray, title='img'): color = (len(imgs.shape) == 3 and imgs.shape[-1] == 3) imgs = np.expand_dims(imgs, axis=0) for i, img in enumerate(imgs): plt.figure() plt.title('{}_{}'.format(title, i)) plt.imshow(img, cmap=None if color else 'gray') plt.show() def draw_bbox(img_path, result, color=(255, 0, 0), thickness=2): if isinstance(img_path, str): img_path = cv2.imread(img_path) # img_path = cv2.cvtColor(img_path, cv2.COLOR_BGR2RGB) img_path = img_path.copy() for point in result: point = point.astype(int) cv2.polylines(img_path, [point], True, color, thickness) return img_path def cal_text_score(texts, gt_texts, training_masks, running_metric_text, thred=0.5): training_masks = training_masks.numpy() pred_text = texts.numpy() * training_masks pred_text[pred_text <= thred] = 0 pred_text[pred_text > thred] = 1 pred_text = pred_text.astype(np.int32) gt_text = gt_texts.numpy() * training_masks gt_text = gt_text.astype(np.int32) running_metric_text.update(gt_text, pred_text) score_text, _ = running_metric_text.get_scores() return score_text def order_points_clockwise(pts): rect = np.zeros((4, 2), dtype="float32") s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def order_points_clockwise_list(pts): pts = pts.tolist() pts.sort(key=lambda x: (x[1], x[0])) pts[:2] = sorted(pts[:2], key=lambda x: x[0]) pts[2:] = sorted(pts[2:], key=lambda x: -x[0]) pts = np.array(pts) return pts def get_datalist(train_data_path): """ 获取训练和验证的数据list :param train_data_path: 训练的dataset文件列表,每个文件内以如下格式存储 ‘path/to/img\tlabel’ :return: """ train_data = [] for p in train_data_path: with open(p, 'r', encoding='utf-8') as f: for line in f.readlines(): line = line.strip('\n').replace('.jpg ', '.jpg\t').split('\t') if len(line) > 1: img_path = pathlib.Path(line[0].strip(' ')) label_path = pathlib.Path(line[1].strip(' ')) if img_path.exists() and img_path.stat( ).st_size > 0 and label_path.exists() and label_path.stat( ).st_size > 0: train_data.append((str(img_path), str(label_path))) return train_data def save_result(result_path, box_list, score_list, is_output_polygon): if is_output_polygon: with open(result_path, 'wt') as res: for i, box in enumerate(box_list): box = box.reshape(-1).tolist() result = ",".join([str(int(x)) for x in box]) score = score_list[i] res.write(result + ',' + str(score) + "\n") else: with open(result_path, 'wt') as res: for i, box in enumerate(box_list): score = score_list[i] box = box.reshape(-1).tolist() result = ",".join([str(int(x)) for x in box]) res.write(result + ',' + str(score) + "\n") def expand_polygon(polygon): """ 对只有一个字符的框进行扩充 """ (x, y), (w, h), angle = cv2.minAreaRect(np.float32(polygon)) if angle < -45: w, h = h, w angle += 90 new_w = w + h box = ((x, y), (new_w, h), angle) points = cv2.boxPoints(box) return order_points_clockwise(points) def _merge_dict(config, merge_dct): """ Recursive dict merge. Inspired by :meth:``dict.update()``, instead of updating only top-level keys, dict_merge recurses down into dicts nested to an arbitrary depth, updating keys. The ``merge_dct`` is merged into ``dct``. Args: config: dict onto which the merge is executed merge_dct: dct merged into config Returns: dct """ for key, value in merge_dct.items(): sub_keys = key.split('.') key = sub_keys[0] if key in config and len(sub_keys) > 1: _merge_dict(config[key], {'.'.join(sub_keys[1:]): value}) elif key in config and isinstance(config[key], dict) and isinstance( value, Mapping): _merge_dict(config[key], value) else: config[key] = value return config def print_dict(cfg, print_func=print, delimiter=0): """ Recursively visualize a dict and indenting acrrording by the relationship of keys. """ for k, v in sorted(cfg.items()): if isinstance(v, dict): print_func("{}{} : ".format(delimiter * " ", str(k))) print_dict(v, print_func, delimiter + 4) elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict): print_func("{}{} : ".format(delimiter * " ", str(k))) for value in v: print_dict(value, print_func, delimiter + 4) else: print_func("{}{} : {}".format(delimiter * " ", k, v)) class Config(object): def __init__(self, config_path, BASE_KEY='base'): self.BASE_KEY = BASE_KEY self.cfg = self._load_config_with_base(config_path) def _load_config_with_base(self, file_path): """ Load config from file. Args: file_path (str): Path of the config file to be loaded. Returns: global config """ _, ext = os.path.splitext(file_path) assert ext in ['.yml', '.yaml'], "only support yaml files for now" with open(file_path) as f: file_cfg = yaml.load(f, Loader=yaml.Loader) # NOTE: cfgs outside have higher priority than cfgs in _BASE_ if self.BASE_KEY in file_cfg: all_base_cfg = dict() base_ymls = list(file_cfg[self.BASE_KEY]) for base_yml in base_ymls: with open(base_yml) as f: base_cfg = self._load_config_with_base(base_yml) all_base_cfg = _merge_dict(all_base_cfg, base_cfg) del file_cfg[self.BASE_KEY] file_cfg = _merge_dict(all_base_cfg, file_cfg) file_cfg['filename'] = os.path.splitext(os.path.split(file_path)[-1])[0] return file_cfg def merge_dict(self, args): self.cfg = _merge_dict(self.cfg, args) def print_cfg(self, print_func=print): """ Recursively visualize a dict and indenting acrrording by the relationship of keys. """ print_func('----------- Config -----------') print_dict(self.cfg, print_func) print_func('---------------------------------------------') def save(self, p): with open(p, 'w') as f: yaml.dump( dict(self.cfg), f, default_flow_style=False, sort_keys=False) class ArgsParser(ArgumentParser): def __init__(self): super(ArgsParser, self).__init__( formatter_class=RawDescriptionHelpFormatter) self.add_argument( "-c", "--config_file", help="configuration file to use") self.add_argument( "-o", "--opt", nargs='*', help="set configuration options") self.add_argument( '-p', '--profiler_options', type=str, default=None, help='The option of profiler, which should be in format ' \ '\"key1=value1;key2=value2;key3=value3\".' ) def parse_args(self, argv=None): args = super(ArgsParser, self).parse_args(argv) assert args.config_file is not None, \ "Please specify --config_file=configure_file_path." args.opt = self._parse_opt(args.opt) return args def _parse_opt(self, opts): config = {} if not opts: return config for s in opts: s = s.strip() k, v = s.split('=', 1) if '.' not in k: config[k] = yaml.load(v, Loader=yaml.Loader) else: keys = k.split('.') if keys[0] not in config: config[keys[0]] = {} cur = config[keys[0]] for idx, key in enumerate(keys[1:]): if idx == len(keys) - 2: cur[key] = yaml.load(v, Loader=yaml.Loader) else: cur[key] = {} cur = cur[key] return config if __name__ == '__main__': img = np.zeros((1, 3, 640, 640)) show_img(img[0][0]) plt.show()