import paddle from models.losses.basic_loss import BalanceCrossEntropyLoss, MaskL1Loss, DiceLoss class DBLoss(paddle.nn.Layer): def __init__(self, alpha=1.0, beta=10, ohem_ratio=3, reduction='mean', eps=1e-06): """ Implement PSE Loss. :param alpha: binary_map loss 前面的系数 :param beta: threshold_map loss 前面的系数 :param ohem_ratio: OHEM的比例 :param reduction: 'mean' or 'sum'对 batch里的loss 算均值或求和 """ super().__init__() assert reduction in ['mean', 'sum'], " reduction must in ['mean','sum']" self.alpha = alpha self.beta = beta self.bce_loss = BalanceCrossEntropyLoss(negative_ratio=ohem_ratio) self.dice_loss = DiceLoss(eps=eps) self.l1_loss = MaskL1Loss(eps=eps) self.ohem_ratio = ohem_ratio self.reduction = reduction def forward(self, pred, batch): shrink_maps = pred[:, 0, :, :] threshold_maps = pred[:, 1, :, :] binary_maps = pred[:, 2, :, :] loss_shrink_maps = self.bce_loss(shrink_maps, batch['shrink_map'], batch['shrink_mask']) loss_threshold_maps = self.l1_loss( threshold_maps, batch['threshold_map'], batch['threshold_mask']) metrics = dict( loss_shrink_maps=loss_shrink_maps, loss_threshold_maps=loss_threshold_maps) if pred.shape[1] > 2: loss_binary_maps = self.dice_loss(binary_maps, batch['shrink_map'], batch['shrink_mask']) metrics['loss_binary_maps'] = loss_binary_maps loss_all = (self.alpha * loss_shrink_maps + self.beta * loss_threshold_maps + loss_binary_maps) metrics['loss'] = loss_all else: metrics['loss'] = loss_shrink_maps return metrics