# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import nn import paddle.nn.functional as F from paddle import ParamAttr __all__ = ['MobileNetV3'] def make_divisible(v, divisor=8, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class MobileNetV3(nn.Layer): def __init__(self, in_channels=3, model_name='large', scale=0.5, disable_se=False, **kwargs): """ the MobilenetV3 backbone network for detection module. Args: params(dict): the super parameters for build network """ super(MobileNetV3, self).__init__() self.disable_se = disable_se if model_name == "large": cfg = [ # k, exp, c, se, nl, s, [3, 16, 16, False, 'relu', 1], [3, 64, 24, False, 'relu', 2], [3, 72, 24, False, 'relu', 1], [5, 72, 40, True, 'relu', 2], [5, 120, 40, True, 'relu', 1], [5, 120, 40, True, 'relu', 1], [3, 240, 80, False, 'hard_swish', 2], [3, 200, 80, False, 'hard_swish', 1], [3, 184, 80, False, 'hard_swish', 1], [3, 184, 80, False, 'hard_swish', 1], [3, 480, 112, True, 'hard_swish', 1], [3, 672, 112, True, 'hard_swish', 1], [5, 672, 160, True, 'hard_swish', 2], [5, 960, 160, True, 'hard_swish', 1], [5, 960, 160, True, 'hard_swish', 1], ] cls_ch_squeeze = 960 elif model_name == "small": cfg = [ # k, exp, c, se, nl, s, [3, 16, 16, True, 'relu', 2], [3, 72, 24, False, 'relu', 2], [3, 88, 24, False, 'relu', 1], [5, 96, 40, True, 'hard_swish', 2], [5, 240, 40, True, 'hard_swish', 1], [5, 240, 40, True, 'hard_swish', 1], [5, 120, 48, True, 'hard_swish', 1], [5, 144, 48, True, 'hard_swish', 1], [5, 288, 96, True, 'hard_swish', 2], [5, 576, 96, True, 'hard_swish', 1], [5, 576, 96, True, 'hard_swish', 1], ] cls_ch_squeeze = 576 else: raise NotImplementedError("mode[" + model_name + "_model] is not implemented!") supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25] assert scale in supported_scale, \ "supported scale are {} but input scale is {}".format(supported_scale, scale) inplanes = 16 # conv1 self.conv = ConvBNLayer( in_channels=in_channels, out_channels=make_divisible(inplanes * scale), kernel_size=3, stride=2, padding=1, groups=1, if_act=True, act='hard_swish', name='conv1') self.stages = [] self.out_channels = [] block_list = [] i = 0 inplanes = make_divisible(inplanes * scale) for (k, exp, c, se, nl, s) in cfg: if s == 2 and i > 2: self.out_channels.append(inplanes) self.stages.append(nn.Sequential(*block_list)) block_list = [] block_list.append( ResidualUnit( in_channels=inplanes, mid_channels=make_divisible(scale * exp), out_channels=make_divisible(scale * c), kernel_size=k, stride=s, use_se=se, act=nl, name="conv" + str(i + 2))) inplanes = make_divisible(scale * c) i += 1 block_list.append( ConvBNLayer( in_channels=inplanes, out_channels=make_divisible(scale * cls_ch_squeeze), kernel_size=1, stride=1, padding=0, groups=1, if_act=True, act='hard_swish', name='conv_last')) self.stages.append(nn.Sequential(*block_list)) self.out_channels.append(make_divisible(scale * cls_ch_squeeze)) for i, stage in enumerate(self.stages): self.add_sublayer(sublayer=stage, name="stage{}".format(i)) def forward(self, x): x = self.conv(x) out_list = [] for stage in self.stages: x = stage(x) out_list.append(x) return out_list class ConvBNLayer(nn.Layer): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, groups=1, if_act=True, act=None, name=None): super(ConvBNLayer, self).__init__() self.if_act = if_act self.act = act self.conv = nn.Conv2D( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, weight_attr=ParamAttr(name=name + '_weights'), bias_attr=False) self.bn = nn.BatchNorm( num_channels=out_channels, act=None, param_attr=ParamAttr(name=name + "_bn_scale"), bias_attr=ParamAttr(name=name + "_bn_offset"), moving_mean_name=name + "_bn_mean", moving_variance_name=name + "_bn_variance") def forward(self, x): x = self.conv(x) x = self.bn(x) if self.if_act: if self.act == "relu": x = F.relu(x) elif self.act == "hard_swish": x = F.activation.hard_swish(x) else: print("The activation function is selected incorrectly.") exit() return x class ResidualUnit(nn.Layer): def __init__(self, in_channels, mid_channels, out_channels, kernel_size, stride, use_se, act=None, name=''): super(ResidualUnit, self).__init__() self.if_shortcut = stride == 1 and in_channels == out_channels self.if_se = use_se self.expand_conv = ConvBNLayer( in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1, padding=0, if_act=True, act=act, name=name + "_expand") self.bottleneck_conv = ConvBNLayer( in_channels=mid_channels, out_channels=mid_channels, kernel_size=kernel_size, stride=stride, padding=int((kernel_size - 1) // 2), groups=mid_channels, if_act=True, act=act, name=name + "_depthwise") if self.if_se and not self.disable_se: self.mid_se = SEModule(mid_channels, name=name + "_se") self.linear_conv = ConvBNLayer( in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, if_act=False, act=None, name=name + "_linear") def forward(self, inputs): x = self.expand_conv(inputs) x = self.bottleneck_conv(x) if self.if_se and not self.disable_se: x = self.mid_se(x) x = self.linear_conv(x) if self.if_shortcut: x = paddle.add(inputs, x) return x class SEModule(nn.Layer): def __init__(self, in_channels, reduction=4, name=""): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2D(1) self.conv1 = nn.Conv2D( in_channels=in_channels, out_channels=in_channels // reduction, kernel_size=1, stride=1, padding=0, weight_attr=ParamAttr(name=name + "_1_weights"), bias_attr=ParamAttr(name=name + "_1_offset")) self.conv2 = nn.Conv2D( in_channels=in_channels // reduction, out_channels=in_channels, kernel_size=1, stride=1, padding=0, weight_attr=ParamAttr(name + "_2_weights"), bias_attr=ParamAttr(name=name + "_2_offset")) def forward(self, inputs): outputs = self.avg_pool(inputs) outputs = self.conv1(outputs) outputs = F.relu(outputs) outputs = self.conv2(outputs) outputs = F.activation.hard_sigmoid(outputs) return inputs * outputs