""" # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys import six import cv2 import numpy as np class DecodeImage(object): """ decode image """ def __init__(self, img_mode='RGB', channel_first=False, **kwargs): self.img_mode = img_mode self.channel_first = channel_first def __call__(self, data): img = data['image'] if six.PY2: assert type(img) is str and len( img) > 0, "invalid input 'img' in DecodeImage" else: assert type(img) is bytes and len( img) > 0, "invalid input 'img' in DecodeImage" img = np.frombuffer(img, dtype='uint8') img = cv2.imdecode(img, 1) if img is None: return None if self.img_mode == 'GRAY': img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) elif self.img_mode == 'RGB': assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape) img = img[:, :, ::-1] if self.channel_first: img = img.transpose((2, 0, 1)) data['image'] = img return data class NormalizeImage(object): """ normalize image such as substract mean, divide std """ def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs): if isinstance(scale, str): scale = eval(scale) self.scale = np.float32(scale if scale is not None else 1.0 / 255.0) mean = mean if mean is not None else [0.485, 0.456, 0.406] std = std if std is not None else [0.229, 0.224, 0.225] shape = (3, 1, 1) if order == 'chw' else (1, 1, 3) self.mean = np.array(mean).reshape(shape).astype('float32') self.std = np.array(std).reshape(shape).astype('float32') def __call__(self, data): img = data['image'] from PIL import Image if isinstance(img, Image.Image): img = np.array(img) assert isinstance(img, np.ndarray), "invalid input 'img' in NormalizeImage" data['image'] = ( img.astype('float32') * self.scale - self.mean) / self.std return data class ToCHWImage(object): """ convert hwc image to chw image """ def __init__(self, **kwargs): pass def __call__(self, data): img = data['image'] from PIL import Image if isinstance(img, Image.Image): img = np.array(img) data['image'] = img.transpose((2, 0, 1)) return data class KeepKeys(object): def __init__(self, keep_keys, **kwargs): self.keep_keys = keep_keys def __call__(self, data): data_list = [] for key in self.keep_keys: data_list.append(data[key]) return data_list class DetResizeForTest(object): def __init__(self, **kwargs): super(DetResizeForTest, self).__init__() self.resize_type = 0 if 'image_shape' in kwargs: self.image_shape = kwargs['image_shape'] self.resize_type = 1 if 'limit_side_len' in kwargs: self.limit_side_len = kwargs['limit_side_len'] self.limit_type = kwargs.get('limit_type', 'min') else: self.limit_side_len = 736 self.limit_type = 'min' def __call__(self, data): img = data['image'] if self.resize_type == 0: img, shape = self.resize_image_type0(img) else: img, shape = self.resize_image_type1(img) data['image'] = img data['shape'] = shape return data def resize_image_type1(self, img): resize_h, resize_w = self.image_shape ori_h, ori_w = img.shape[:2] # (h, w, c) img = cv2.resize(img, (int(resize_w), int(resize_h))) return img, np.array([ori_h, ori_w]) def resize_image_type0(self, img): """ resize image to a size multiple of 32 which is required by the network args: img(array): array with shape [h, w, c] return(tuple): img, (ratio_h, ratio_w) """ limit_side_len = self.limit_side_len h, w, _ = img.shape # limit the max side if self.limit_type == 'max': if max(h, w) > limit_side_len: if h > w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w else: ratio = 1. else: if min(h, w) < limit_side_len: if h < w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w else: ratio = 1. resize_h = int(h * ratio) resize_w = int(w * ratio) resize_h = int(round(resize_h / 32) * 32) resize_w = int(round(resize_w / 32) * 32) try: if int(resize_w) <= 0 or int(resize_h) <= 0: return None, (None, None) img = cv2.resize(img, (int(resize_w), int(resize_h))) except: print(img.shape, resize_w, resize_h) sys.exit(0) return img, np.array([h, w])