# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is refer from: https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/mmocr/models/textrecog/decoders/master_decoder.py """ import copy import math import paddle from paddle import nn from paddle.nn import functional as F class TableMasterHead(nn.Layer): """ Split to two transformer header at the last layer. Cls_layer is used to structure token classification. Bbox_layer is used to regress bbox coord. """ def __init__(self, in_channels, out_channels=30, headers=8, d_ff=2048, dropout=0, max_text_length=500, point_num=2, **kwargs): super(TableMasterHead, self).__init__() hidden_size = in_channels[-1] self.layers = clones( DecoderLayer(headers, hidden_size, dropout, d_ff), 2) self.cls_layer = clones( DecoderLayer(headers, hidden_size, dropout, d_ff), 1) self.bbox_layer = clones( DecoderLayer(headers, hidden_size, dropout, d_ff), 1) self.cls_fc = nn.Linear(hidden_size, out_channels) self.bbox_fc = nn.Sequential( # nn.Linear(hidden_size, hidden_size), nn.Linear(hidden_size, point_num * 2), nn.Sigmoid()) self.norm = nn.LayerNorm(hidden_size) self.embedding = Embeddings(d_model=hidden_size, vocab=out_channels) self.positional_encoding = PositionalEncoding(d_model=hidden_size) self.SOS = out_channels - 3 self.PAD = out_channels - 1 self.out_channels = out_channels self.point_num = point_num self.max_text_length = max_text_length def make_mask(self, tgt): """ Make mask for self attention. :param src: [b, c, h, l_src] :param tgt: [b, l_tgt] :return: """ trg_pad_mask = (tgt != self.PAD).unsqueeze(1).unsqueeze(3) tgt_len = paddle.shape(tgt)[1] trg_sub_mask = paddle.tril( paddle.ones( ([tgt_len, tgt_len]), dtype=paddle.float32)) tgt_mask = paddle.logical_and( trg_pad_mask.astype(paddle.float32), trg_sub_mask) return tgt_mask.astype(paddle.float32) def decode(self, input, feature, src_mask, tgt_mask): # main process of transformer decoder. x = self.embedding(input) # x: 1*x*512, feature: 1*3600,512 x = self.positional_encoding(x) # origin transformer layers for i, layer in enumerate(self.layers): x = layer(x, feature, src_mask, tgt_mask) # cls head for layer in self.cls_layer: cls_x = layer(x, feature, src_mask, tgt_mask) cls_x = self.norm(cls_x) # bbox head for layer in self.bbox_layer: bbox_x = layer(x, feature, src_mask, tgt_mask) bbox_x = self.norm(bbox_x) return self.cls_fc(cls_x), self.bbox_fc(bbox_x) def greedy_forward(self, SOS, feature): input = SOS output = paddle.zeros( [input.shape[0], self.max_text_length + 1, self.out_channels]) bbox_output = paddle.zeros( [input.shape[0], self.max_text_length + 1, self.point_num * 2]) max_text_length = paddle.to_tensor(self.max_text_length) for i in range(max_text_length + 1): target_mask = self.make_mask(input) out_step, bbox_output_step = self.decode(input, feature, None, target_mask) prob = F.softmax(out_step, axis=-1) next_word = prob.argmax(axis=2, dtype="int64") input = paddle.concat( [input, next_word[:, -1].unsqueeze(-1)], axis=1) if i == self.max_text_length: output = out_step bbox_output = bbox_output_step return output, bbox_output def forward_train(self, out_enc, targets): # x is token of label # feat is feature after backbone before pe. # out_enc is feature after pe. padded_targets = targets[0] src_mask = None tgt_mask = self.make_mask(padded_targets[:, :-1]) output, bbox_output = self.decode(padded_targets[:, :-1], out_enc, src_mask, tgt_mask) return {'structure_probs': output, 'loc_preds': bbox_output} def forward_test(self, out_enc): batch_size = out_enc.shape[0] SOS = paddle.zeros([batch_size, 1], dtype='int64') + self.SOS output, bbox_output = self.greedy_forward(SOS, out_enc) output = F.softmax(output) return {'structure_probs': output, 'loc_preds': bbox_output} def forward(self, feat, targets=None): feat = feat[-1] b, c, h, w = feat.shape feat = feat.reshape([b, c, h * w]) # flatten 2D feature map feat = feat.transpose((0, 2, 1)) out_enc = self.positional_encoding(feat) if self.training: return self.forward_train(out_enc, targets) return self.forward_test(out_enc) class DecoderLayer(nn.Layer): """ Decoder is made of self attention, srouce attention and feed forward. """ def __init__(self, headers, d_model, dropout, d_ff): super(DecoderLayer, self).__init__() self.self_attn = MultiHeadAttention(headers, d_model, dropout) self.src_attn = MultiHeadAttention(headers, d_model, dropout) self.feed_forward = FeedForward(d_model, d_ff, dropout) self.sublayer = clones(SubLayerConnection(d_model, dropout), 3) def forward(self, x, feature, src_mask, tgt_mask): x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1]( x, lambda x: self.src_attn(x, feature, feature, src_mask)) return self.sublayer[2](x, self.feed_forward) class MultiHeadAttention(nn.Layer): def __init__(self, headers, d_model, dropout): super(MultiHeadAttention, self).__init__() assert d_model % headers == 0 self.d_k = int(d_model / headers) self.headers = headers self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(dropout) def forward(self, query, key, value, mask=None): B = query.shape[0] # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).reshape([B, 0, self.headers, self.d_k]).transpose([0, 2, 1, 3]) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch x, self.attn = self_attention( query, key, value, mask=mask, dropout=self.dropout) x = x.transpose([0, 2, 1, 3]).reshape([B, 0, self.headers * self.d_k]) return self.linears[-1](x) class FeedForward(nn.Layer): def __init__(self, d_model, d_ff, dropout): super(FeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) class SubLayerConnection(nn.Layer): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SubLayerConnection, self).__init__() self.norm = nn.LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): return x + self.dropout(sublayer(self.norm(x))) def masked_fill(x, mask, value): mask = mask.astype(x.dtype) return x * paddle.logical_not(mask).astype(x.dtype) + mask * value def self_attention(query, key, value, mask=None, dropout=None): """ Compute 'Scale Dot Product Attention' """ d_k = value.shape[-1] score = paddle.matmul(query, key.transpose([0, 1, 3, 2]) / math.sqrt(d_k)) if mask is not None: # score = score.masked_fill(mask == 0, -1e9) # b, h, L, L score = masked_fill(score, mask == 0, -6.55e4) # for fp16 p_attn = F.softmax(score, axis=-1) if dropout is not None: p_attn = dropout(p_attn) return paddle.matmul(p_attn, value), p_attn def clones(module, N): """ Produce N identical layers """ return nn.LayerList([copy.deepcopy(module) for _ in range(N)]) class Embeddings(nn.Layer): def __init__(self, d_model, vocab): super(Embeddings, self).__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model def forward(self, *input): x = input[0] return self.lut(x) * math.sqrt(self.d_model) class PositionalEncoding(nn.Layer): """ Implement the PE function. """ def __init__(self, d_model, dropout=0., max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = paddle.zeros([max_len, d_model]) position = paddle.arange(0, max_len).unsqueeze(1).astype('float32') div_term = paddle.exp( paddle.arange(0, d_model, 2) * -math.log(10000.0) / d_model) pe[:, 0::2] = paddle.sin(position * div_term) pe[:, 1::2] = paddle.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, feat, **kwargs): feat = feat + self.pe[:, :paddle.shape(feat)[1]] # pe 1*5000*512 return self.dropout(feat)