# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle __all__ = ['KIEMetric'] class VQAReTokenMetric(object): def __init__(self, main_indicator='hmean', **kwargs): self.main_indicator = main_indicator self.reset() def __call__(self, preds, batch, **kwargs): pred_relations, relations, entities = preds self.pred_relations_list.extend(pred_relations) self.relations_list.extend(relations) self.entities_list.extend(entities) def get_metric(self): gt_relations = [] for b in range(len(self.relations_list)): rel_sent = [] for head, tail in zip(self.relations_list[b]["head"], self.relations_list[b]["tail"]): rel = {} rel["head_id"] = head rel["head"] = (self.entities_list[b]["start"][rel["head_id"]], self.entities_list[b]["end"][rel["head_id"]]) rel["head_type"] = self.entities_list[b]["label"][rel[ "head_id"]] rel["tail_id"] = tail rel["tail"] = (self.entities_list[b]["start"][rel["tail_id"]], self.entities_list[b]["end"][rel["tail_id"]]) rel["tail_type"] = self.entities_list[b]["label"][rel[ "tail_id"]] rel["type"] = 1 rel_sent.append(rel) gt_relations.append(rel_sent) re_metrics = self.re_score( self.pred_relations_list, gt_relations, mode="boundaries") metrics = { "precision": re_metrics["ALL"]["p"], "recall": re_metrics["ALL"]["r"], "hmean": re_metrics["ALL"]["f1"], } self.reset() return metrics def reset(self): self.pred_relations_list = [] self.relations_list = [] self.entities_list = [] def re_score(self, pred_relations, gt_relations, mode="strict"): """Evaluate RE predictions Args: pred_relations (list) : list of list of predicted relations (several relations in each sentence) gt_relations (list) : list of list of ground truth relations rel = { "head": (start_idx (inclusive), end_idx (exclusive)), "tail": (start_idx (inclusive), end_idx (exclusive)), "head_type": ent_type, "tail_type": ent_type, "type": rel_type} vocab (Vocab) : dataset vocabulary mode (str) : in 'strict' or 'boundaries'""" assert mode in ["strict", "boundaries"] relation_types = [v for v in [0, 1] if not v == 0] scores = { rel: { "tp": 0, "fp": 0, "fn": 0 } for rel in relation_types + ["ALL"] } # Count GT relations and Predicted relations n_sents = len(gt_relations) n_rels = sum([len([rel for rel in sent]) for sent in gt_relations]) n_found = sum([len([rel for rel in sent]) for sent in pred_relations]) # Count TP, FP and FN per type for pred_sent, gt_sent in zip(pred_relations, gt_relations): for rel_type in relation_types: # strict mode takes argument types into account if mode == "strict": pred_rels = {(rel["head"], rel["head_type"], rel["tail"], rel["tail_type"]) for rel in pred_sent if rel["type"] == rel_type} gt_rels = {(rel["head"], rel["head_type"], rel["tail"], rel["tail_type"]) for rel in gt_sent if rel["type"] == rel_type} # boundaries mode only takes argument spans into account elif mode == "boundaries": pred_rels = {(rel["head"], rel["tail"]) for rel in pred_sent if rel["type"] == rel_type} gt_rels = {(rel["head"], rel["tail"]) for rel in gt_sent if rel["type"] == rel_type} scores[rel_type]["tp"] += len(pred_rels & gt_rels) scores[rel_type]["fp"] += len(pred_rels - gt_rels) scores[rel_type]["fn"] += len(gt_rels - pred_rels) # Compute per entity Precision / Recall / F1 for rel_type in scores.keys(): if scores[rel_type]["tp"]: scores[rel_type]["p"] = scores[rel_type]["tp"] / ( scores[rel_type]["fp"] + scores[rel_type]["tp"]) scores[rel_type]["r"] = scores[rel_type]["tp"] / ( scores[rel_type]["fn"] + scores[rel_type]["tp"]) else: scores[rel_type]["p"], scores[rel_type]["r"] = 0, 0 if not scores[rel_type]["p"] + scores[rel_type]["r"] == 0: scores[rel_type]["f1"] = ( 2 * scores[rel_type]["p"] * scores[rel_type]["r"] / (scores[rel_type]["p"] + scores[rel_type]["r"])) else: scores[rel_type]["f1"] = 0 # Compute micro F1 Scores tp = sum([scores[rel_type]["tp"] for rel_type in relation_types]) fp = sum([scores[rel_type]["fp"] for rel_type in relation_types]) fn = sum([scores[rel_type]["fn"] for rel_type in relation_types]) if tp: precision = tp / (tp + fp) recall = tp / (tp + fn) f1 = 2 * precision * recall / (precision + recall) else: precision, recall, f1 = 0, 0, 0 scores["ALL"]["p"] = precision scores["ALL"]["r"] = recall scores["ALL"]["f1"] = f1 scores["ALL"]["tp"] = tp scores["ALL"]["fp"] = fp scores["ALL"]["fn"] = fn # Compute Macro F1 Scores scores["ALL"]["Macro_f1"] = np.mean( [scores[ent_type]["f1"] for ent_type in relation_types]) scores["ALL"]["Macro_p"] = np.mean( [scores[ent_type]["p"] for ent_type in relation_types]) scores["ALL"]["Macro_r"] = np.mean( [scores[ent_type]["r"] for ent_type in relation_types]) return scores