===========================train_params=========================== model_name:layoutxlm_ser_PACT python:python3.7 gpu_list:0|0,1 Global.use_gpu:True|True Global.auto_cast:fp32 Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=17 Global.save_model_dir:./output/ Train.loader.batch_size_per_card:lite_train_lite_infer=4|whole_train_whole_infer=8 Architecture.Backbone.pretrained:pretrain_models/ser_LayoutXLM_xfun_zh train_model_name:latest train_infer_img_dir:ppstructure/docs/kie/input/zh_val_42.jpg null:null ## trainer:pact_train norm_train:null pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/layoutxlm_ser/ser_layoutxlm_xfund_zh.yml -o Global.eval_batch_step=[2000,10] fpgm_train:null distill_train:null null:null null:null ## ===========================eval_params=========================== eval:null null:null ## ===========================infer_params=========================== Global.save_inference_dir:./output/ Architecture.Backbone.checkpoints: norm_export:null quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/layoutxlm_ser/ser_layoutxlm_xfund_zh.yml -o fpgm_export: null distill_export:null export1:null export2:null ## infer_model:null infer_export:null infer_quant:False inference:ppstructure/kie/predict_kie_token_ser.py --kie_algorithm=LayoutXLM --ser_dict_path=train_data/XFUND/class_list_xfun.txt --output=output --use_gpu:True|False --enable_mkldnn:False --cpu_threads:6 --rec_batch_num:1 --use_tensorrt:False --precision:fp32 --ser_model_dir: --image_dir:./ppstructure/docs/kie/input/zh_val_42.jpg null:null --benchmark:False null:null ===========================infer_benchmark_params========================== random_infer_input:[{float32,[3,224,224]}]