# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) import yaml import paddle import paddle.distributed as dist paddle.seed(2) from ppocr.data import build_dataloader from ppocr.modeling.architectures import build_model from ppocr.losses import build_loss from ppocr.optimizer import build_optimizer from ppocr.postprocess import build_post_process from ppocr.metrics import build_metric from ppocr.utils.save_load import load_model import tools.program as program dist.get_world_size() def main(config, device, logger, vdl_writer): # init dist environment if config['Global']['distributed']: dist.init_parallel_env() global_config = config['Global'] # build dataloader train_dataloader = build_dataloader(config, 'Train', device, logger) if len(train_dataloader) == 0: logger.error( "No Images in train dataset, please ensure\n" + "\t1. The images num in the train label_file_list should be larger than or equal with batch size.\n" + "\t2. The annotation file and path in the configuration file are provided normally." ) return if config['Eval']: valid_dataloader = build_dataloader(config, 'Eval', device, logger) else: valid_dataloader = None # build post process post_process_class = build_post_process(config['PostProcess'], global_config) # build model # for rec algorithm if hasattr(post_process_class, 'character'): char_num = len(getattr(post_process_class, 'character')) if config['Architecture']["algorithm"] in ["Distillation", ]: # distillation model for key in config['Architecture']["Models"]: config['Architecture']["Models"][key]["Head"][ 'out_channels'] = char_num else: # base rec model config['Architecture']["Head"]['out_channels'] = char_num model = build_model(config['Architecture']) if config['Global']['distributed']: model = paddle.DataParallel(model) # build loss loss_class = build_loss(config['Loss']) # build optim optimizer, lr_scheduler = build_optimizer( config['Optimizer'], epochs=config['Global']['epoch_num'], step_each_epoch=len(train_dataloader), parameters=model.parameters()) # build metric eval_class = build_metric(config['Metric']) # load pretrain model pre_best_model_dict = load_model(config, model, optimizer, config['Architecture']["model_type"]) logger.info('train dataloader has {} iters'.format(len(train_dataloader))) if valid_dataloader is not None: logger.info('valid dataloader has {} iters'.format( len(valid_dataloader))) use_amp = config["Global"].get("use_amp", False) if use_amp: AMP_RELATED_FLAGS_SETTING = { 'FLAGS_cudnn_batchnorm_spatial_persistent': 1, 'FLAGS_max_inplace_grad_add': 8, } paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING) scale_loss = config["Global"].get("scale_loss", 1.0) use_dynamic_loss_scaling = config["Global"].get( "use_dynamic_loss_scaling", False) scaler = paddle.amp.GradScaler( init_loss_scaling=scale_loss, use_dynamic_loss_scaling=use_dynamic_loss_scaling) else: scaler = None # start train program.train(config, train_dataloader, valid_dataloader, device, model, loss_class, optimizer, lr_scheduler, post_process_class, eval_class, pre_best_model_dict, logger, vdl_writer, scaler) def test_reader(config, device, logger): loader = build_dataloader(config, 'Train', device, logger) import time starttime = time.time() count = 0 try: for data in loader(): count += 1 if count % 1 == 0: batch_time = time.time() - starttime starttime = time.time() logger.info("reader: {}, {}, {}".format( count, len(data[0]), batch_time)) except Exception as e: logger.info(e) logger.info("finish reader: {}, Success!".format(count)) if __name__ == '__main__': config, device, logger, vdl_writer = program.preprocess(is_train=True) main(config, device, logger, vdl_writer) # test_reader(config, device, logger)