// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include namespace PaddleOCR { void PostProcessor::GetContourArea(const std::vector> &box, float unclip_ratio, float &distance) { int pts_num = 4; float area = 0.0f; float dist = 0.0f; for (int i = 0; i < pts_num; i++) { area += box[i][0] * box[(i + 1) % pts_num][1] - box[i][1] * box[(i + 1) % pts_num][0]; dist += sqrtf((box[i][0] - box[(i + 1) % pts_num][0]) * (box[i][0] - box[(i + 1) % pts_num][0]) + (box[i][1] - box[(i + 1) % pts_num][1]) * (box[i][1] - box[(i + 1) % pts_num][1])); } area = fabs(float(area / 2.0)); distance = area * unclip_ratio / dist; } cv::RotatedRect PostProcessor::UnClip(std::vector> box, const float &unclip_ratio) { float distance = 1.0; GetContourArea(box, unclip_ratio, distance); ClipperLib::ClipperOffset offset; ClipperLib::Path p; p << ClipperLib::IntPoint(int(box[0][0]), int(box[0][1])) << ClipperLib::IntPoint(int(box[1][0]), int(box[1][1])) << ClipperLib::IntPoint(int(box[2][0]), int(box[2][1])) << ClipperLib::IntPoint(int(box[3][0]), int(box[3][1])); offset.AddPath(p, ClipperLib::jtRound, ClipperLib::etClosedPolygon); ClipperLib::Paths soln; offset.Execute(soln, distance); std::vector points; for (int j = 0; j < soln.size(); j++) { for (int i = 0; i < soln[soln.size() - 1].size(); i++) { points.emplace_back(soln[j][i].X, soln[j][i].Y); } } cv::RotatedRect res; if (points.size() <= 0) { res = cv::RotatedRect(cv::Point2f(0, 0), cv::Size2f(1, 1), 0); } else { res = cv::minAreaRect(points); } return res; } float **PostProcessor::Mat2Vec(cv::Mat mat) { auto **array = new float *[mat.rows]; for (int i = 0; i < mat.rows; ++i) array[i] = new float[mat.cols]; for (int i = 0; i < mat.rows; ++i) { for (int j = 0; j < mat.cols; ++j) { array[i][j] = mat.at(i, j); } } return array; } std::vector> PostProcessor::OrderPointsClockwise(std::vector> pts) { std::vector> box = pts; std::sort(box.begin(), box.end(), XsortInt); std::vector> leftmost = {box[0], box[1]}; std::vector> rightmost = {box[2], box[3]}; if (leftmost[0][1] > leftmost[1][1]) std::swap(leftmost[0], leftmost[1]); if (rightmost[0][1] > rightmost[1][1]) std::swap(rightmost[0], rightmost[1]); std::vector> rect = {leftmost[0], rightmost[0], rightmost[1], leftmost[1]}; return rect; } std::vector> PostProcessor::Mat2Vector(cv::Mat mat) { std::vector> img_vec; std::vector tmp; for (int i = 0; i < mat.rows; ++i) { tmp.clear(); for (int j = 0; j < mat.cols; ++j) { tmp.push_back(mat.at(i, j)); } img_vec.push_back(tmp); } return img_vec; } bool PostProcessor::XsortFp32(std::vector a, std::vector b) { if (a[0] != b[0]) return a[0] < b[0]; return false; } bool PostProcessor::XsortInt(std::vector a, std::vector b) { if (a[0] != b[0]) return a[0] < b[0]; return false; } std::vector> PostProcessor::GetMiniBoxes(cv::RotatedRect box, float &ssid) { ssid = std::max(box.size.width, box.size.height); cv::Mat points; cv::boxPoints(box, points); auto array = Mat2Vector(points); std::sort(array.begin(), array.end(), XsortFp32); std::vector idx1 = array[0], idx2 = array[1], idx3 = array[2], idx4 = array[3]; if (array[3][1] <= array[2][1]) { idx2 = array[3]; idx3 = array[2]; } else { idx2 = array[2]; idx3 = array[3]; } if (array[1][1] <= array[0][1]) { idx1 = array[1]; idx4 = array[0]; } else { idx1 = array[0]; idx4 = array[1]; } array[0] = idx1; array[1] = idx2; array[2] = idx3; array[3] = idx4; return array; } float PostProcessor::PolygonScoreAcc(std::vector contour, cv::Mat pred) { int width = pred.cols; int height = pred.rows; std::vector box_x; std::vector box_y; for (int i = 0; i < contour.size(); ++i) { box_x.push_back(contour[i].x); box_y.push_back(contour[i].y); } int xmin = clamp(int(std::floor(*(std::min_element(box_x.begin(), box_x.end())))), 0, width - 1); int xmax = clamp(int(std::ceil(*(std::max_element(box_x.begin(), box_x.end())))), 0, width - 1); int ymin = clamp(int(std::floor(*(std::min_element(box_y.begin(), box_y.end())))), 0, height - 1); int ymax = clamp(int(std::ceil(*(std::max_element(box_y.begin(), box_y.end())))), 0, height - 1); cv::Mat mask; mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1); cv::Point *rook_point = new cv::Point[contour.size()]; for (int i = 0; i < contour.size(); ++i) { rook_point[i] = cv::Point(int(box_x[i]) - xmin, int(box_y[i]) - ymin); } const cv::Point *ppt[1] = {rook_point}; int npt[] = {int(contour.size())}; cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1)); cv::Mat croppedImg; pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1)) .copyTo(croppedImg); float score = cv::mean(croppedImg, mask)[0]; delete[] rook_point; return score; } float PostProcessor::BoxScoreFast(std::vector> box_array, cv::Mat pred) { auto array = box_array; int width = pred.cols; int height = pred.rows; float box_x[4] = {array[0][0], array[1][0], array[2][0], array[3][0]}; float box_y[4] = {array[0][1], array[1][1], array[2][1], array[3][1]}; int xmin = clamp(int(std::floor(*(std::min_element(box_x, box_x + 4)))), 0, width - 1); int xmax = clamp(int(std::ceil(*(std::max_element(box_x, box_x + 4)))), 0, width - 1); int ymin = clamp(int(std::floor(*(std::min_element(box_y, box_y + 4)))), 0, height - 1); int ymax = clamp(int(std::ceil(*(std::max_element(box_y, box_y + 4)))), 0, height - 1); cv::Mat mask; mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1); cv::Point root_point[4]; root_point[0] = cv::Point(int(array[0][0]) - xmin, int(array[0][1]) - ymin); root_point[1] = cv::Point(int(array[1][0]) - xmin, int(array[1][1]) - ymin); root_point[2] = cv::Point(int(array[2][0]) - xmin, int(array[2][1]) - ymin); root_point[3] = cv::Point(int(array[3][0]) - xmin, int(array[3][1]) - ymin); const cv::Point *ppt[1] = {root_point}; int npt[] = {4}; cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1)); cv::Mat croppedImg; pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1)) .copyTo(croppedImg); auto score = cv::mean(croppedImg, mask)[0]; return score; } std::vector>> PostProcessor::BoxesFromBitmap( const cv::Mat pred, const cv::Mat bitmap, const float &box_thresh, const float &det_db_unclip_ratio, const std::string &det_db_score_mode) { const int min_size = 3; const int max_candidates = 1000; int width = bitmap.cols; int height = bitmap.rows; std::vector> contours; std::vector hierarchy; cv::findContours(bitmap, contours, hierarchy, cv::RETR_LIST, cv::CHAIN_APPROX_SIMPLE); int num_contours = contours.size() >= max_candidates ? max_candidates : contours.size(); std::vector>> boxes; for (int _i = 0; _i < num_contours; _i++) { if (contours[_i].size() <= 2) { continue; } float ssid; cv::RotatedRect box = cv::minAreaRect(contours[_i]); auto array = GetMiniBoxes(box, ssid); auto box_for_unclip = array; // end get_mini_box if (ssid < min_size) { continue; } float score; if (det_db_score_mode == "slow") /* compute using polygon*/ score = PolygonScoreAcc(contours[_i], pred); else score = BoxScoreFast(array, pred); if (score < box_thresh) continue; // start for unclip cv::RotatedRect points = UnClip(box_for_unclip, det_db_unclip_ratio); if (points.size.height < 1.001 && points.size.width < 1.001) { continue; } // end for unclip cv::RotatedRect clipbox = points; auto cliparray = GetMiniBoxes(clipbox, ssid); if (ssid < min_size + 2) continue; int dest_width = pred.cols; int dest_height = pred.rows; std::vector> intcliparray; for (int num_pt = 0; num_pt < 4; num_pt++) { std::vector a{int(clampf(roundf(cliparray[num_pt][0] / float(width) * float(dest_width)), 0, float(dest_width))), int(clampf(roundf(cliparray[num_pt][1] / float(height) * float(dest_height)), 0, float(dest_height)))}; intcliparray.push_back(a); } boxes.push_back(intcliparray); } // end for return boxes; } std::vector>> PostProcessor::FilterTagDetRes(std::vector>> boxes, float ratio_h, float ratio_w, cv::Mat srcimg) { int oriimg_h = srcimg.rows; int oriimg_w = srcimg.cols; std::vector>> root_points; for (int n = 0; n < boxes.size(); n++) { boxes[n] = OrderPointsClockwise(boxes[n]); for (int m = 0; m < boxes[0].size(); m++) { boxes[n][m][0] /= ratio_w; boxes[n][m][1] /= ratio_h; boxes[n][m][0] = int(_min(_max(boxes[n][m][0], 0), oriimg_w - 1)); boxes[n][m][1] = int(_min(_max(boxes[n][m][1], 0), oriimg_h - 1)); } } for (int n = 0; n < boxes.size(); n++) { int rect_width, rect_height; rect_width = int(sqrt(pow(boxes[n][0][0] - boxes[n][1][0], 2) + pow(boxes[n][0][1] - boxes[n][1][1], 2))); rect_height = int(sqrt(pow(boxes[n][0][0] - boxes[n][3][0], 2) + pow(boxes[n][0][1] - boxes[n][3][1], 2))); if (rect_width <= 4 || rect_height <= 4) continue; root_points.push_back(boxes[n]); } return root_points; } } // namespace PaddleOCR