# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) def set_paddle_flags(**kwargs): for key, value in kwargs.items(): if os.environ.get(key, None) is None: os.environ[key] = str(value) # NOTE(paddle-dev): All of these flags should be # set before `import paddle`. Otherwise, it would # not take any effect. set_paddle_flags( FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory ) import tools.program as program from paddle import fluid from ppocr.utils.utility import initial_logger logger = initial_logger() from ppocr.utils.utility import enable_static_mode from ppocr.data.reader_main import reader_main from ppocr.utils.save_load import init_model from ppocr.utils.character import CharacterOps from ppocr.utils.utility import create_module from ppocr.utils.utility import get_image_file_list def main(): config = program.load_config(FLAGS.config) program.merge_config(FLAGS.opt) logger.info(config) char_ops = CharacterOps(config['Global']) loss_type = config['Global']['loss_type'] config['Global']['char_ops'] = char_ops # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global']['use_gpu'] # check_gpu(use_gpu) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) rec_model = create_module(config['Architecture']['function'])(params=config) startup_prog = fluid.Program() eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): _, outputs = rec_model(mode="test") fetch_name_list = list(outputs.keys()) fetch_varname_list = [outputs[v].name for v in fetch_name_list] eval_prog = eval_prog.clone(for_test=True) exe.run(startup_prog) init_model(config, eval_prog, exe) blobs = reader_main(config, 'test')() infer_img = config['Global']['infer_img'] infer_list = get_image_file_list(infer_img) max_img_num = len(infer_list) if len(infer_list) == 0: logger.info("Can not find img in infer_img dir.") for i in range(max_img_num): logger.info("infer_img:%s" % infer_list[i]) img = next(blobs) if loss_type != "srn": predict = exe.run(program=eval_prog, feed={"image": img}, fetch_list=fetch_varname_list, return_numpy=False) else: encoder_word_pos_list = [] gsrm_word_pos_list = [] gsrm_slf_attn_bias1_list = [] gsrm_slf_attn_bias2_list = [] encoder_word_pos_list.append(img[1]) gsrm_word_pos_list.append(img[2]) gsrm_slf_attn_bias1_list.append(img[3]) gsrm_slf_attn_bias2_list.append(img[4]) encoder_word_pos_list = np.concatenate( encoder_word_pos_list, axis=0).astype(np.int64) gsrm_word_pos_list = np.concatenate( gsrm_word_pos_list, axis=0).astype(np.int64) gsrm_slf_attn_bias1_list = np.concatenate( gsrm_slf_attn_bias1_list, axis=0).astype(np.float32) gsrm_slf_attn_bias2_list = np.concatenate( gsrm_slf_attn_bias2_list, axis=0).astype(np.float32) predict = exe.run(program=eval_prog, \ feed={'image': img[0], 'encoder_word_pos': encoder_word_pos_list, 'gsrm_word_pos': gsrm_word_pos_list, 'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1_list, 'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2_list}, \ fetch_list=fetch_varname_list, \ return_numpy=False) if loss_type == "ctc": preds = np.array(predict[0]) preds = preds.reshape(-1) preds_lod = predict[0].lod()[0] preds_text = char_ops.decode(preds) probs = np.array(predict[1]) ind = np.argmax(probs, axis=1) blank = probs.shape[1] valid_ind = np.where(ind != (blank - 1))[0] if len(valid_ind) == 0: continue score = np.mean(probs[valid_ind, ind[valid_ind]]) elif loss_type == "attention": preds = np.array(predict[0]) probs = np.array(predict[1]) end_pos = np.where(preds[0, :] == 1)[0] if len(end_pos) <= 1: preds = preds[0, 1:] score = np.mean(probs[0, 1:]) else: preds = preds[0, 1:end_pos[1]] score = np.mean(probs[0, 1:end_pos[1]]) preds = preds.reshape(-1) preds_text = char_ops.decode(preds) elif loss_type == "srn": char_num = char_ops.get_char_num() preds = np.array(predict[0]) preds = preds.reshape(-1) probs = np.array(predict[1]) ind = np.argmax(probs, axis=1) valid_ind = np.where(preds != int(char_num - 1))[0] if len(valid_ind) == 0: continue score = np.mean(probs[valid_ind, ind[valid_ind]]) preds = preds[:valid_ind[-1] + 1] preds_text = char_ops.decode(preds) logger.info("\t index: {}".format(preds)) logger.info("\t word : {}".format(preds_text)) logger.info("\t score: {}".format(score)) # save for inference model target_var = [] for key, values in outputs.items(): target_var.append(values) fluid.io.save_inference_model( "./output/", feeded_var_names=['image'], target_vars=target_var, executor=exe, main_program=eval_prog, model_filename="model", params_filename="params") if __name__ == '__main__': enable_static_mode() parser = program.ArgsParser() FLAGS = parser.parse_args() main()