# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_server.web_service import WebService, Op import logging import numpy as np import cv2 import base64 # from paddle_serving_app.reader import OCRReader from ocr_reader import OCRReader, DetResizeForTest, ArgsParser from paddle_serving_app.reader import Sequential, ResizeByFactor from paddle_serving_app.reader import Div, Normalize, Transpose _LOGGER = logging.getLogger() class RecOp(Op): def init_op(self): self.ocr_reader = OCRReader( char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt") def preprocess(self, input_dicts, data_id, log_id): (_, input_dict), = input_dicts.items() raw_im = base64.b64decode(input_dict["image"].encode('utf8')) data = np.fromstring(raw_im, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) feed_list = [] max_wh_ratio = 0 ## Many mini-batchs, the type of feed_data is list. max_batch_size = 6 # len(dt_boxes) # If max_batch_size is 0, skipping predict stage if max_batch_size == 0: return {}, True, None, "" boxes_size = max_batch_size rem = boxes_size % max_batch_size h, w = im.shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) _, w, h = self.ocr_reader.resize_norm_img(im, max_wh_ratio).shape norm_img = self.ocr_reader.resize_norm_img(im, max_batch_size) norm_img = norm_img[np.newaxis, :] feed = {"x": norm_img.copy()} feed_list.append(feed) return feed_list, False, None, "" def postprocess(self, input_dicts, fetch_data, data_id, log_id): res_list = [] if isinstance(fetch_data, dict): if len(fetch_data) > 0: rec_batch_res = self.ocr_reader.postprocess( fetch_data, with_score=True) for res in rec_batch_res: res_list.append(res[0]) elif isinstance(fetch_data, list): for one_batch in fetch_data: one_batch_res = self.ocr_reader.postprocess( one_batch, with_score=True) for res in one_batch_res: res_list.append(res[0]) res = {"res": str(res_list)} return res, None, "" class OcrService(WebService): def get_pipeline_response(self, read_op): rec_op = RecOp(name="rec", input_ops=[read_op]) print("rec op:", rec_op) return rec_op uci_service = OcrService(name="ocr") FLAGS = ArgsParser().parse_args() uci_service.prepare_pipeline_config(yml_dict=FLAGS.conf_dict) uci_service.run_service()