Global: use_gpu: true epoch_num: 100 log_smooth_window: 20 print_batch_step: 20 save_model_dir: ./output/SLANet save_epoch_step: 400 # evaluation is run every 1000 iterations after the 0th iteration eval_batch_step: [0, 1000] cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: ./output/SLANet/infer use_visualdl: False infer_img: doc/table/table.jpg # for data or label process character_dict_path: ppocr/utils/dict/table_structure_dict.txt character_type: en max_text_length: &max_text_length 500 box_format: &box_format 'xyxy' # 'xywh', 'xyxy', 'xyxyxyxy' infer_mode: False use_sync_bn: True save_res_path: 'output/infer' Optimizer: name: Adam beta1: 0.9 beta2: 0.999 clip_norm: 5.0 lr: name: Piecewise learning_rate: 0.001 decay_epochs : [40, 50] values : [0.001, 0.0001, 0.00005] regularizer: name: 'L2' factor: 0.00000 Architecture: model_type: table algorithm: SLANet Backbone: name: PPLCNet scale: 1.0 pretrained: true use_ssld: true Neck: name: CSPPAN out_channels: 96 Head: name: SLAHead hidden_size: 256 max_text_length: *max_text_length loc_reg_num: &loc_reg_num 4 Loss: name: SLALoss structure_weight: 1.0 loc_weight: 2.0 loc_loss: smooth_l1 PostProcess: name: TableLabelDecode merge_no_span_structure: &merge_no_span_structure False Metric: name: TableMetric main_indicator: acc compute_bbox_metric: False loc_reg_num: *loc_reg_num box_format: *box_format Train: dataset: name: PubTabDataSet data_dir: train_data/table/pubtabnet/train/ label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - TableLabelEncode: learn_empty_box: False merge_no_span_structure: *merge_no_span_structure replace_empty_cell_token: False loc_reg_num: *loc_reg_num max_text_length: *max_text_length - TableBoxEncode: in_box_format: *box_format out_box_format: *box_format - ResizeTableImage: max_len: 488 - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - PaddingTableImage: size: [488, 488] - ToCHWImage: - KeepKeys: keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ] loader: shuffle: True batch_size_per_card: 48 drop_last: True num_workers: 1 Eval: dataset: name: PubTabDataSet data_dir: train_data/table/pubtabnet/val/ label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - TableLabelEncode: learn_empty_box: False merge_no_span_structure: *merge_no_span_structure replace_empty_cell_token: False loc_reg_num: *loc_reg_num max_text_length: *max_text_length - TableBoxEncode: in_box_format: *box_format out_box_format: *box_format - ResizeTableImage: max_len: 488 - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - PaddingTableImage: size: [488, 488] - ToCHWImage: - KeepKeys: keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ] loader: shuffle: False drop_last: False batch_size_per_card: 48 num_workers: 1