#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import paddle import paddle.nn as nn from .rec_ctc_loss import CTCLoss from .basic_loss import DMLLoss from .basic_loss import DistanceLoss from .det_db_loss import DBLoss from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss def _sum_loss(loss_dict): if "loss" in loss_dict.keys(): return loss_dict else: loss_dict["loss"] = 0. for k, value in loss_dict.items(): if k == "loss": continue else: loss_dict["loss"] += value return loss_dict class DistillationDMLLoss(DMLLoss): """ """ def __init__(self, model_name_pairs=[], act=None, key=None, maps_name=None, name="loss_dml"): super().__init__(act=act) assert isinstance(model_name_pairs, list) self.key = key self.model_name_pairs = model_name_pairs self.name = name self.maps_name = self.maps_name def _check_maps_name(self, maps_name): if maps_name is None: return None elif type(maps_name) == str: return [maps_name] elif type(maps_name) == list: return [maps_name] else: return None def _slice_out(self, outs): new_outs = {} for k in self.maps_name: if k == "thrink_maps": new_outs[k] = paddle.slice(outs, axes=1, starts=0, ends=1) elif k == "threshold_maps": new_outs[k] = paddle.slice(outs, axes=1, starts=1, ends=2) elif k == "binary_maps": new_outs[k] = paddle.slice(outs, axes=1, starts=2, ends=3) else: continue def forward(self, predicts, batch): loss_dict = dict() for idx, pair in enumerate(self.model_name_pairs): out1 = predicts[pair[0]] out2 = predicts[pair[1]] if self.key is not None: out1 = out1[self.key] out2 = out2[self.key] if self.maps_name is None: loss = super().forward(out1, out2) if isinstance(loss, dict): for key in loss: loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], idx)] = loss[key] else: loss_dict["{}_{}".format(self.name, idx)] = loss else: outs1 = self._slice_out(out1) outs2 = self._slice_out(out2) for k in outs1.keys(): loss = super().forward(outs1[k], outs2[k]) if isinstance(loss, dict): for key in loss: loss_dict["{}_{}_{}_{}_{}".format(key, pair[ 0], pair[1], map_name, idx)] = loss[key] else: loss_dict["{}_{}_{}".format(self.name, map_name, idx)] = loss loss_dict = _sum_loss(loss_dict) return loss_dict class DistillationCTCLoss(CTCLoss): def __init__(self, model_name_list=[], key=None, name="loss_ctc"): super().__init__() self.model_name_list = model_name_list self.key = key self.name = name def forward(self, predicts, batch): loss_dict = dict() for idx, model_name in enumerate(self.model_name_list): out = predicts[model_name] if self.key is not None: out = out[self.key] loss = super().forward(out, batch) if isinstance(loss, dict): for key in loss: loss_dict["{}_{}_{}".format(self.name, model_name, idx)] = loss[key] else: loss_dict["{}_{}".format(self.name, model_name)] = loss return loss_dict class DistillationDistanceLoss(DistanceLoss): """ """ def __init__(self, mode="l2", model_name_pairs=[], key=None, name="loss_distance", **kargs): super().__init__(mode=mode, **kargs) assert isinstance(model_name_pairs, list) self.key = key self.model_name_pairs = model_name_pairs self.name = name + "_l2" def forward(self, predicts, batch): loss_dict = dict() for idx, pair in enumerate(self.model_name_pairs): out1 = predicts[pair[0]] out2 = predicts[pair[1]] if self.key is not None: out1 = out1[self.key] out2 = out2[self.key] loss = super().forward(out1, out2) if isinstance(loss, dict): for key in loss: loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[ key] else: loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1], idx)] = loss return loss_dict