===========================train_params=========================== model_name:slanet_PACT python:python3.7 gpu_list:0|0,1 Global.use_gpu:True|True Global.auto_cast:fp32 Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=50 Global.save_model_dir:./output/ Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=2 Global.pretrained_model:./pretrain_models/en_ppstructure_mobile_v2.0_SLANet_train/best_accuracy train_model_name:latest train_infer_img_dir:./ppstructure/docs/table/table.jpg null:null ## trainer:pact_train norm_train:null pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/slanet/SLANet.yml -o fpgm_train:null distill_train:null null:null null:null ## ===========================eval_params=========================== eval:null null:null ## ===========================infer_params=========================== Global.save_inference_dir:./output/ Global.checkpoints: norm_export:null quant_export:deploy/slim/quantization/export_model.py -c test_tipc/configs/slanet/SLANet.yml -o fpgm_export: distill_export:null export1:null export2:null ## infer_model:./inference/en_ppstructure_mobile_v2.0_SLANet_infer infer_export:null infer_quant:True inference:ppstructure/table/predict_table.py --det_model_dir=./inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=./inference/en_ppocr_mobile_v2.0_table_rec_infer --rec_char_dict_path=./ppocr/utils/dict/table_dict.txt --table_char_dict_path=./ppocr/utils/dict/table_structure_dict.txt --image_dir=./ppstructure/docs/table/table.jpg --det_limit_side_len=736 --det_limit_type=min --output ./output/table --use_gpu:True|False --enable_mkldnn:False --cpu_threads:6 --rec_batch_num:1 --use_tensorrt:False --precision:fp32 --table_model_dir: --image_dir:./ppstructure/docs/table/table.jpg null:null --benchmark:True null:null ===========================infer_benchmark_params========================== random_infer_input:[{float32,[3,488,488]}]