# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import subprocess __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) os.environ["FLAGS_allocator_strategy"] = 'auto_growth' import cv2 import copy import logging import numpy as np import time import tools.infer.predict_rec as predict_rec import tools.infer.predict_det as predict_det import tools.infer.utility as utility from tools.infer.predict_system import sorted_boxes from ppocr.utils.utility import get_image_file_list, check_and_read from ppocr.utils.logging import get_logger from ppstructure.table.matcher import TableMatch from ppstructure.table.table_master_match import TableMasterMatcher from ppstructure.utility import parse_args import ppstructure.table.predict_structure as predict_strture logger = get_logger() def expand(pix, det_box, shape): x0, y0, x1, y1 = det_box # print(shape) h, w, c = shape tmp_x0 = x0 - pix tmp_x1 = x1 + pix tmp_y0 = y0 - pix tmp_y1 = y1 + pix x0_ = tmp_x0 if tmp_x0 >= 0 else 0 x1_ = tmp_x1 if tmp_x1 <= w else w y0_ = tmp_y0 if tmp_y0 >= 0 else 0 y1_ = tmp_y1 if tmp_y1 <= h else h return x0_, y0_, x1_, y1_ class TableSystem(object): def __init__(self, args, text_detector=None, text_recognizer=None): self.args = args if not args.show_log: logger.setLevel(logging.INFO) self.text_detector = predict_det.TextDetector( args) if text_detector is None else text_detector self.text_recognizer = predict_rec.TextRecognizer( args) if text_recognizer is None else text_recognizer self.table_structurer = predict_strture.TableStructurer(args) if args.table_algorithm in ['TableMaster']: self.match = TableMasterMatcher() else: self.match = TableMatch(filter_ocr_result=True) self.benchmark = args.benchmark self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor( args, 'table', logger) if args.benchmark: import auto_log pid = os.getpid() gpu_id = utility.get_infer_gpuid() self.autolog = auto_log.AutoLogger( model_name="table", model_precision=args.precision, batch_size=1, data_shape="dynamic", save_path=None, #args.save_log_path, inference_config=self.config, pids=pid, process_name=None, gpu_ids=gpu_id if args.use_gpu else None, time_keys=[ 'preprocess_time', 'inference_time', 'postprocess_time' ], warmup=0, logger=logger) def __call__(self, img, return_ocr_result_in_table=False): result = dict() time_dict = {'det': 0, 'rec': 0, 'table': 0, 'all': 0, 'match': 0} start = time.time() if self.args.benchmark: self.autolog.times.start() structure_res, elapse = self._structure(copy.deepcopy(img)) if self.benchmark: self.autolog.times.stamp() result['cell_bbox'] = structure_res[1].tolist() time_dict['table'] = elapse dt_boxes, rec_res, det_elapse, rec_elapse = self._ocr( copy.deepcopy(img)) if self.benchmark: self.autolog.times.stamp() time_dict['det'] = det_elapse time_dict['rec'] = rec_elapse if return_ocr_result_in_table: result['boxes'] = dt_boxes #[x.tolist() for x in dt_boxes] result['rec_res'] = rec_res tic = time.time() pred_html = self.match(structure_res, dt_boxes, rec_res) toc = time.time() time_dict['match'] = toc - tic result['html'] = pred_html end = time.time() time_dict['all'] = end - start if self.benchmark: self.autolog.times.end(stamp=True) return result, time_dict def _structure(self, img): structure_res, elapse = self.table_structurer(copy.deepcopy(img)) return structure_res, elapse def _ocr(self, img): h, w = img.shape[:2] dt_boxes, det_elapse = self.text_detector(copy.deepcopy(img)) dt_boxes = sorted_boxes(dt_boxes) r_boxes = [] for box in dt_boxes: x_min = max(0, box[:, 0].min() - 1) x_max = min(w, box[:, 0].max() + 1) y_min = max(0, box[:, 1].min() - 1) y_max = min(h, box[:, 1].max() + 1) box = [x_min, y_min, x_max, y_max] r_boxes.append(box) dt_boxes = np.array(r_boxes) logger.debug("dt_boxes num : {}, elapse : {}".format( len(dt_boxes), det_elapse)) if dt_boxes is None: return None, None img_crop_list = [] for i in range(len(dt_boxes)): det_box = dt_boxes[i] x0, y0, x1, y1 = expand(2, det_box, img.shape) text_rect = img[int(y0):int(y1), int(x0):int(x1), :] img_crop_list.append(text_rect) rec_res, rec_elapse = self.text_recognizer(img_crop_list) logger.debug("rec_res num : {}, elapse : {}".format( len(rec_res), rec_elapse)) return dt_boxes, rec_res, det_elapse, rec_elapse def to_excel(html_table, excel_path): from tablepyxl import tablepyxl tablepyxl.document_to_xl(html_table, excel_path) def main(args): image_file_list = get_image_file_list(args.image_dir) image_file_list = image_file_list[args.process_id::args.total_process_num] os.makedirs(args.output, exist_ok=True) table_sys = TableSystem(args) img_num = len(image_file_list) f_html = open( os.path.join(args.output, 'show.html'), mode='w', encoding='utf-8') f_html.write('\n\n') f_html.write('\n') f_html.write( "" ) f_html.write("\n") f_html.write('') f_html.write('') f_html.write('') f_html.write("\n") for i, image_file in enumerate(image_file_list): logger.info("[{}/{}] {}".format(i, img_num, image_file)) img, flag, _ = check_and_read(image_file) excel_path = os.path.join( args.output, os.path.basename(image_file).split('.')[0] + '.xlsx') if not flag: img = cv2.imread(image_file) if img is None: logger.error("error in loading image:{}".format(image_file)) continue starttime = time.time() pred_res, _ = table_sys(img) pred_html = pred_res['html'] logger.info(pred_html) to_excel(pred_html, excel_path) logger.info('excel saved to {}'.format(excel_path)) elapse = time.time() - starttime logger.info("Predict time : {:.3f}s".format(elapse)) if len(pred_res['cell_bbox']) > 0 and len(pred_res['cell_bbox'][ 0]) == 4: img = predict_strture.draw_rectangle(image_file, pred_res['cell_bbox']) else: img = utility.draw_boxes(img, pred_res['cell_bbox']) img_save_path = os.path.join(args.output, os.path.basename(image_file)) cv2.imwrite(img_save_path, img) f_html.write("\n") f_html.write(f'\n') f_html.write('
img name\n') f_html.write('ori imagetable htmlcell box
{os.path.basename(image_file)}
\n') f_html.write(f'
' + pred_html.replace( '
', '').replace('
', '') + '
\n') f_html.write( f'\n') f_html.write("\n") f_html.write("\n") f_html.close() if args.benchmark: table_sys.autolog.report() if __name__ == "__main__": args = parse_args() if args.use_mp: p_list = [] total_process_num = args.total_process_num for process_id in range(total_process_num): cmd = [sys.executable, "-u"] + sys.argv + [ "--process_id={}".format(process_id), "--use_mp={}".format(False) ] p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout) p_list.append(p) for p in p_list: p.wait() else: main(args)