# OCR算法 - [1. 两阶段算法](#1-两阶段算法) - [1.1 文本检测算法](#11-文本检测算法) - [1.2 文本识别算法](#12-文本识别算法) - [2. 端到端算法](#2-端到端算法) 本文给出了PaddleOCR已支持的OCR算法列表,以及每个算法在**英文公开数据集**上的模型和指标,主要用于算法简介和算法性能对比,更多包括中文在内的其他数据集上的模型请参考[PP-OCR v2.0 系列模型下载](./models_list.md)。 ## 1. 两阶段算法 ### 1.1 文本检测算法 PaddleOCR开源的文本检测算法列表: - [x] DB([paper]( https://arxiv.org/abs/1911.08947)) [2](ppocr推荐) - [x] EAST([paper](https://arxiv.org/abs/1704.03155))[1] - [x] SAST([paper](https://arxiv.org/abs/1908.05498))[4] - [x] PSENet([paper](https://arxiv.org/abs/1903.12473v2)) - [x] FCENet([paper](https://arxiv.org/abs/2104.10442)) 在ICDAR2015文本检测公开数据集上,算法效果如下: |模型|骨干网络|precision|recall|Hmean|下载链接| | --- | --- | --- | --- | --- | --- | |EAST|ResNet50_vd|88.71%|81.36%|84.88%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)| |EAST|MobileNetV3|78.2%|79.1%|78.65%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)| |DB|ResNet50_vd|86.41%|78.72%|82.38%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)| |DB|MobileNetV3|77.29%|73.08%|75.12%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)| |SAST|ResNet50_vd|91.39%|83.77%|87.42%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)| |PSE|ResNet50_vd|85.81%|79.53%|82.55%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)| |PSE|MobileNetV3|82.20%|70.48%|75.89%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_mv3_pse_v2.0_train.tar)| 在Total-text文本检测公开数据集上,算法效果如下: |模型|骨干网络|precision|recall|Hmean|下载链接| | --- | --- | --- | --- | --- | --- | |SAST|ResNet50_vd|89.63%|78.44%|83.66%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)| 在CTW1500文本检测公开数据集上,算法效果如下: |模型|骨干网络|precision|recall|Hmean|下载链接| | --- | --- | --- | --- | --- | --- | |FCE|ResNet50_dcn|88.39%|82.18%|85.27%|[训练模型](https://paddleocr.bj.bcebos.com/contribution/det_r50_dcn_fce_ctw_v2.0_train.tar)| **说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载: * [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi) * [Google Drive下载地址](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing) **模型训练与推理** - 以上文本检测算法的训练请参考文档教程中[模型训练/评估中的文本检测部分](./detection.md)。 - 上述模型中除PP-OCR系列模型以外,其余模型仅支持基于Python引擎的推理,具体内容可参考[基于Python预测引擎推理](./algorithm_inference.md) ### 1.2 文本识别算法 PaddleOCR开源的文本识别算法列表: - [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7](ppocr推荐) - [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10] - [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11] - [x] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] - [x] SRN([paper](https://arxiv.org/abs/2003.12294))[5] - [x] NRTR([paper](https://arxiv.org/abs/1806.00926v2))[13] - [x] SAR([paper](https://arxiv.org/abs/1811.00751v2)) - [x] SEED([paper](https://arxiv.org/pdf/2005.10977.pdf)) 参考[DTRB](https://arxiv.org/abs/1904.01906)[3]文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下: |模型|骨干网络|Avg Accuracy|模型存储命名|下载链接| |---|---|---|---|---| |Rosetta|Resnet34_vd|79.11%|rec_r34_vd_none_none_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)| |Rosetta|MobileNetV3|75.80%|rec_mv3_none_none_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)| |CRNN|Resnet34_vd|81.04%|rec_r34_vd_none_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)| |CRNN|MobileNetV3|77.95%|rec_mv3_none_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)| |StarNet|Resnet34_vd|82.85%|rec_r34_vd_tps_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)| |StarNet|MobileNetV3|79.28%|rec_mv3_tps_bilstm_ctc|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)| |RARE|Resnet34_vd|83.98%|rec_r34_vd_tps_bilstm_att |[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)| |RARE|MobileNetV3|81.76%|rec_mv3_tps_bilstm_att |[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)| |SRN|Resnet50_vd_fpn| 86.31% | rec_r50fpn_vd_none_srn | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) | |NRTR|NRTR_MTB| 84.21% | rec_mtb_nrtr | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) | |SAR|Resnet31| 87.20% | rec_r31_sar | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_r31_sar_train.tar) | |SEED|Aster_Resnet| 85.35% | rec_resnet_stn_bilstm_att | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/rec/rec_resnet_stn_bilstm_att.tar) | **模型训练与推理** - 以上文本识别算法的训练请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)。 - 上述模型中除PP-OCR系列模型以外,其余模型仅支持基于Python引擎的推理,具体内容可参考[基于Python预测引擎推理](./algorithm_inference.md) ## 2. 端到端算法 PaddleOCR开源的端到端OCR算法列表: - [x] PGNet([paper](https://www.aaai.org/AAAI21Papers/AAAI-2885.WangP.pdf)) > [PGNet更多信息与教程](./pgnet.md)