from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F class SAREncoder(nn.Layer): """ Args: enc_bi_rnn (bool): If True, use bidirectional RNN in encoder. enc_drop_rnn (float): Dropout probability of RNN layer in encoder. enc_gru (bool): If True, use GRU, else LSTM in encoder. d_model (int): Dim of channels from backbone. d_enc (int): Dim of encoder RNN layer. mask (bool): If True, mask padding in RNN sequence. """ def __init__(self, enc_bi_rnn=False, enc_drop_rnn=0.1, enc_gru=False, d_model=512, d_enc=512, mask=True, **kwargs): super().__init__() assert isinstance(enc_bi_rnn, bool) assert isinstance(enc_drop_rnn, (int, float)) assert 0 <= enc_drop_rnn < 1.0 assert isinstance(enc_gru, bool) assert isinstance(d_model, int) assert isinstance(d_enc, int) assert isinstance(mask, bool) self.enc_bi_rnn = enc_bi_rnn self.enc_drop_rnn = enc_drop_rnn self.mask = mask # LSTM Encoder if enc_bi_rnn: direction = 'bidirectional' else: direction = 'forward' kwargs = dict( input_size=d_model, hidden_size=d_enc, num_layers=2, time_major=False, dropout=enc_drop_rnn, direction=direction) if enc_gru: self.rnn_encoder = nn.GRU(**kwargs) else: self.rnn_encoder = nn.LSTM(**kwargs) # global feature transformation encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1) self.linear = nn.Linear(encoder_rnn_out_size, encoder_rnn_out_size) def forward(self, feat, img_metas=None): if img_metas is not None: assert len(img_metas[0]) == feat.shape[0] valid_ratios = None if img_metas is not None and self.mask: valid_ratios = img_metas[-1] h_feat = feat.shape[2] # bsz c h w feat_v = F.max_pool2d( feat, kernel_size=(h_feat, 1), stride=1, padding=0) feat_v = feat_v.squeeze(2) # bsz * C * W feat_v = paddle.transpose(feat_v, perm=[0, 2, 1]) # bsz * W * C holistic_feat = self.rnn_encoder(feat_v)[0] # bsz * T * C if valid_ratios is not None: valid_hf = [] T = holistic_feat.shape[1] for i, valid_ratio in enumerate(valid_ratios): valid_step = min(T, math.ceil(T * valid_ratio)) - 1 valid_hf.append(holistic_feat[i, valid_step, :]) valid_hf = paddle.stack(valid_hf, axis=0) else: valid_hf = holistic_feat[:, -1, :] # bsz * C holistic_feat = self.linear(valid_hf) # bsz * C return holistic_feat class BaseDecoder(nn.Layer): def __init__(self, **kwargs): super().__init__() def forward_train(self, feat, out_enc, targets, img_metas): raise NotImplementedError def forward_test(self, feat, out_enc, img_metas): raise NotImplementedError def forward(self, feat, out_enc, label=None, img_metas=None, train_mode=True): self.train_mode = train_mode if train_mode: return self.forward_train(feat, out_enc, label, img_metas) return self.forward_test(feat, out_enc, img_metas) class ParallelSARDecoder(BaseDecoder): """ Args: out_channels (int): Output class number. enc_bi_rnn (bool): If True, use bidirectional RNN in encoder. dec_bi_rnn (bool): If True, use bidirectional RNN in decoder. dec_drop_rnn (float): Dropout of RNN layer in decoder. dec_gru (bool): If True, use GRU, else LSTM in decoder. d_model (int): Dim of channels from backbone. d_enc (int): Dim of encoder RNN layer. d_k (int): Dim of channels of attention module. pred_dropout (float): Dropout probability of prediction layer. max_seq_len (int): Maximum sequence length for decoding. mask (bool): If True, mask padding in feature map. start_idx (int): Index of start token. padding_idx (int): Index of padding token. pred_concat (bool): If True, concat glimpse feature from attention with holistic feature and hidden state. """ def __init__( self, out_channels, # 90 + unknown + start + padding enc_bi_rnn=False, dec_bi_rnn=False, dec_drop_rnn=0.0, dec_gru=False, d_model=512, d_enc=512, d_k=64, pred_dropout=0.1, max_text_length=30, mask=True, pred_concat=True, **kwargs): super().__init__() self.num_classes = out_channels self.enc_bi_rnn = enc_bi_rnn self.d_k = d_k self.start_idx = out_channels - 2 self.padding_idx = out_channels - 1 self.max_seq_len = max_text_length self.mask = mask self.pred_concat = pred_concat encoder_rnn_out_size = d_enc * (int(enc_bi_rnn) + 1) decoder_rnn_out_size = encoder_rnn_out_size * (int(dec_bi_rnn) + 1) # 2D attention layer self.conv1x1_1 = nn.Linear(decoder_rnn_out_size, d_k) self.conv3x3_1 = nn.Conv2D( d_model, d_k, kernel_size=3, stride=1, padding=1) self.conv1x1_2 = nn.Linear(d_k, 1) # Decoder RNN layer if dec_bi_rnn: direction = 'bidirectional' else: direction = 'forward' kwargs = dict( input_size=encoder_rnn_out_size, hidden_size=encoder_rnn_out_size, num_layers=2, time_major=False, dropout=dec_drop_rnn, direction=direction) if dec_gru: self.rnn_decoder = nn.GRU(**kwargs) else: self.rnn_decoder = nn.LSTM(**kwargs) # Decoder input embedding self.embedding = nn.Embedding( self.num_classes, encoder_rnn_out_size, padding_idx=self.padding_idx) # Prediction layer self.pred_dropout = nn.Dropout(pred_dropout) pred_num_classes = self.num_classes - 1 if pred_concat: fc_in_channel = decoder_rnn_out_size + d_model + d_enc else: fc_in_channel = d_model self.prediction = nn.Linear(fc_in_channel, pred_num_classes) def _2d_attention(self, decoder_input, feat, holistic_feat, valid_ratios=None): y = self.rnn_decoder(decoder_input)[0] # y: bsz * (seq_len + 1) * hidden_size attn_query = self.conv1x1_1(y) # bsz * (seq_len + 1) * attn_size bsz, seq_len, attn_size = attn_query.shape attn_query = paddle.unsqueeze(attn_query, axis=[3, 4]) # (bsz, seq_len + 1, attn_size, 1, 1) attn_key = self.conv3x3_1(feat) # bsz * attn_size * h * w attn_key = attn_key.unsqueeze(1) # bsz * 1 * attn_size * h * w attn_weight = paddle.tanh(paddle.add(attn_key, attn_query)) # bsz * (seq_len + 1) * attn_size * h * w attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 3, 4, 2]) # bsz * (seq_len + 1) * h * w * attn_size attn_weight = self.conv1x1_2(attn_weight) # bsz * (seq_len + 1) * h * w * 1 bsz, T, h, w, c = attn_weight.shape assert c == 1 if valid_ratios is not None: # cal mask of attention weight for i, valid_ratio in enumerate(valid_ratios): valid_width = min(w, math.ceil(w * valid_ratio)) if valid_width < w: attn_weight[i, :, :, valid_width:, :] = float('-inf') attn_weight = paddle.reshape(attn_weight, [bsz, T, -1]) attn_weight = F.softmax(attn_weight, axis=-1) attn_weight = paddle.reshape(attn_weight, [bsz, T, h, w, c]) attn_weight = paddle.transpose(attn_weight, perm=[0, 1, 4, 2, 3]) # attn_weight: bsz * T * c * h * w # feat: bsz * c * h * w attn_feat = paddle.sum(paddle.multiply(feat.unsqueeze(1), attn_weight), (3, 4), keepdim=False) # bsz * (seq_len + 1) * C # Linear transformation if self.pred_concat: hf_c = holistic_feat.shape[-1] holistic_feat = paddle.expand( holistic_feat, shape=[bsz, seq_len, hf_c]) y = self.prediction(paddle.concat((y, attn_feat, holistic_feat), 2)) else: y = self.prediction(attn_feat) # bsz * (seq_len + 1) * num_classes if self.train_mode: y = self.pred_dropout(y) return y def forward_train(self, feat, out_enc, label, img_metas): ''' img_metas: [label, valid_ratio] ''' if img_metas is not None: assert len(img_metas[0]) == feat.shape[0] valid_ratios = None if img_metas is not None and self.mask: valid_ratios = img_metas[-1] label = label.cuda() lab_embedding = self.embedding(label) # bsz * seq_len * emb_dim out_enc = out_enc.unsqueeze(1) # bsz * 1 * emb_dim in_dec = paddle.concat((out_enc, lab_embedding), axis=1) # bsz * (seq_len + 1) * C out_dec = self._2d_attention( in_dec, feat, out_enc, valid_ratios=valid_ratios) # bsz * (seq_len + 1) * num_classes return out_dec[:, 1:, :] # bsz * seq_len * num_classes def forward_test(self, feat, out_enc, img_metas): if img_metas is not None: assert len(img_metas[0]) == feat.shape[0] valid_ratios = None if img_metas is not None and self.mask: valid_ratios = img_metas[-1] seq_len = self.max_seq_len bsz = feat.shape[0] start_token = paddle.full( (bsz, ), fill_value=self.start_idx, dtype='int64') # bsz start_token = self.embedding(start_token) # bsz * emb_dim emb_dim = start_token.shape[1] start_token = start_token.unsqueeze(1) start_token = paddle.expand(start_token, shape=[bsz, seq_len, emb_dim]) # bsz * seq_len * emb_dim out_enc = out_enc.unsqueeze(1) # bsz * 1 * emb_dim decoder_input = paddle.concat((out_enc, start_token), axis=1) # bsz * (seq_len + 1) * emb_dim outputs = [] for i in range(1, seq_len + 1): decoder_output = self._2d_attention( decoder_input, feat, out_enc, valid_ratios=valid_ratios) char_output = decoder_output[:, i, :] # bsz * num_classes char_output = F.softmax(char_output, -1) outputs.append(char_output) max_idx = paddle.argmax(char_output, axis=1, keepdim=False) char_embedding = self.embedding(max_idx) # bsz * emb_dim if i < seq_len: decoder_input[:, i + 1, :] = char_embedding outputs = paddle.stack(outputs, 1) # bsz * seq_len * num_classes return outputs class SARHead(nn.Layer): def __init__(self, out_channels, enc_bi_rnn=False, enc_drop_rnn=0.1, enc_gru=False, dec_bi_rnn=False, dec_drop_rnn=0.0, dec_gru=False, d_k=512, pred_dropout=0.1, max_text_length=30, pred_concat=True, **kwargs): super(SARHead, self).__init__() # encoder module self.encoder = SAREncoder( enc_bi_rnn=enc_bi_rnn, enc_drop_rnn=enc_drop_rnn, enc_gru=enc_gru) # decoder module self.decoder = ParallelSARDecoder( out_channels=out_channels, enc_bi_rnn=enc_bi_rnn, dec_bi_rnn=dec_bi_rnn, dec_drop_rnn=dec_drop_rnn, dec_gru=dec_gru, d_k=d_k, pred_dropout=pred_dropout, max_text_length=max_text_length, pred_concat=pred_concat) def forward(self, feat, targets=None): ''' img_metas: [label, valid_ratio] ''' holistic_feat = self.encoder(feat, targets) # bsz c if self.training: label = targets[0] # label label = paddle.to_tensor(label, dtype='int64') final_out = self.decoder( feat, holistic_feat, label, img_metas=targets) if not self.training: final_out = self.decoder( feat, holistic_feat, label=None, img_metas=targets, train_mode=False) # (bsz, seq_len, num_classes) return final_out