===========================train_params=========================== model_name:en_server_pgnetA python:python3.7 gpu_list:0|0,1 Global.use_gpu:True|True Global.auto_cast:null Global.epoch_num:lite_train_lite_infer=5|whole_train_whole_infer=500 Global.save_model_dir:./output/ Train.loader.batch_size_per_card:lite_train_lite_infer=2|whole_train_whole_infer=14 Global.pretrained_model:null train_model_name:latest train_infer_img_dir:./train_data/total_text/test/rgb/ null:null ## trainer:norm_train norm_train:tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./pretrain_models/en_server_pgnetA/best_accuracy pact_train:null fpgm_train:null distill_train:null null:null null:null ## ===========================eval_params=========================== eval:null null:null ## ===========================infer_params=========================== Global.save_inference_dir:./output/ Global.checkpoints: norm_export:tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o quant_export:null fpgm_export:null distill_export:null export1:null export2:null inference_dir:null train_model:./inference/en_server_pgnetA/best_accuracy infer_export:tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o infer_quant:False inference:tools/infer/predict_e2e.py --use_gpu:True|False --enable_mkldnn:False --cpu_threads:1 --rec_batch_num:1 --use_tensorrt:False --precision:fp32 --e2e_model_dir: --image_dir:./inference/ch_det_data_50/all-sum-510/ null:null --benchmark:True null:null ===========================infer_benchmark_params========================== random_infer_input:[{float32,[3,640,640]}];[{float32,[3,960,960]}]