Global: debug: false use_gpu: true epoch_num: 800 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/rec_mobile_pp-OCRv2 save_epoch_step: 3 eval_batch_step: [0, 2000] cal_metric_during_train: true pretrained_model: checkpoints: save_inference_dir: use_visualdl: false infer_img: doc/imgs_words/ch/word_1.jpg character_dict_path: ppocr/utils/ppocr_keys_v1.txt max_text_length: 25 infer_mode: false use_space_char: true distributed: true save_res_path: ./output/rec/predicts_mobile_pp-OCRv2.txt Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: Piecewise decay_epochs : [700, 800] values : [0.001, 0.0001] warmup_epoch: 5 regularizer: name: L2 factor: 2.0e-05 Architecture: model_type: rec algorithm: CRNN Transform: Backbone: name: MobileNetV1Enhance scale: 0.5 Neck: name: SequenceEncoder encoder_type: rnn hidden_size: 64 Head: name: CTCHead mid_channels: 96 fc_decay: 0.00002 Loss: name: CTCLoss PostProcess: name: CTCLabelDecode Metric: name: RecMetric main_indicator: acc Train: dataset: name: SimpleDataSet data_dir: ./train_data/ label_file_list: - ./train_data/train_list.txt transforms: - DecodeImage: img_mode: BGR channel_first: false - RecAug: - CTCLabelEncode: - RecResizeImg: image_shape: [3, 32, 320] - KeepKeys: keep_keys: - image - label - length loader: shuffle: true batch_size_per_card: 128 drop_last: true num_workers: 8 Eval: dataset: name: SimpleDataSet data_dir: ./train_data label_file_list: - ./train_data/val_list.txt transforms: - DecodeImage: img_mode: BGR channel_first: false - CTCLabelEncode: - RecResizeImg: image_shape: [3, 32, 320] - KeepKeys: keep_keys: - image - label - length loader: shuffle: false drop_last: false batch_size_per_card: 128 num_workers: 8