#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss class DBLoss(object): """ Differentiable Binarization (DB) Loss Function args: param (dict): the super paramter for DB Loss """ def __init__(self, params): super(DBLoss, self).__init__() self.balance_loss = params['balance_loss'] self.main_loss_type = params['main_loss_type'] self.alpha = params['alpha'] self.beta = params['beta'] self.ohem_ratio = params['ohem_ratio'] def __call__(self, predicts, labels): label_shrink_map = labels['shrink_map'] label_shrink_mask = labels['shrink_mask'] label_threshold_map = labels['threshold_map'] label_threshold_mask = labels['threshold_mask'] pred = predicts['maps'] shrink_maps = pred[:, 0, :, :] threshold_maps = pred[:, 1, :, :] binary_maps = pred[:, 2, :, :] loss_shrink_maps = BalanceLoss( shrink_maps, label_shrink_map, label_shrink_mask, balance_loss=self.balance_loss, main_loss_type=self.main_loss_type, negative_ratio=self.ohem_ratio) loss_threshold_maps = MaskL1Loss(threshold_maps, label_threshold_map, label_threshold_mask) loss_binary_maps = DiceLoss(binary_maps, label_shrink_map, label_shrink_mask) loss_shrink_maps = self.alpha * loss_shrink_maps loss_threshold_maps = self.beta * loss_threshold_maps loss_all = loss_shrink_maps + loss_threshold_maps\ + loss_binary_maps losses = {'total_loss':loss_all,\ "loss_shrink_maps":loss_shrink_maps,\ "loss_threshold_maps":loss_threshold_maps,\ "loss_binary_maps":loss_binary_maps} return losses