#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr from .rec_seq_encoder import SequenceEncoder from ..common_functions import get_para_bias_attr import numpy as np class CTCPredict(object): def __init__(self, params): super(CTCPredict, self).__init__() self.char_num = params['char_num'] self.encoder = SequenceEncoder(params) self.encoder_type = params['encoder_type'] def __call__(self, inputs, labels=None, mode=None): encoder_features = self.encoder(inputs) if self.encoder_type != "reshape": encoder_features = fluid.layers.concat(encoder_features, axis=1) name = "ctc_fc" para_attr, bias_attr = get_para_bias_attr( l2_decay=0.0004, k=encoder_features.shape[1], name=name) predict = fluid.layers.fc(input=encoder_features, size=self.char_num + 1, param_attr=para_attr, bias_attr=bias_attr, name=name) decoded_out = fluid.layers.ctc_greedy_decoder( input=predict, blank=self.char_num) predicts = {'predict': predict, 'decoded_out': decoded_out} return predicts