Global: use_gpu: True epoch_num: 21 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/rec/nrtr/ save_epoch_step: 1 # evaluation is run every 2000 iterations after the 0th iteration eval_batch_step: [0, 2000] cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: doc/imgs_words_en/word_10.png # for data or label process character_dict_path: character_type: EN_symbol max_text_length: 25 infer_mode: False use_space_char: True save_res_path: ./output/rec/predicts_nrtr.txt Optimizer: name: Adam beta1: 0.9 beta2: 0.99 clip_norm: 5.0 lr: name: Cosine learning_rate: 0.0005 warmup_epoch: 2 regularizer: name: 'L2' factor: 0. Architecture: model_type: rec algorithm: NRTR in_channels: 1 Transform: Backbone: name: MTB cnn_num: 2 Head: name: Transformer d_model: 512 num_encoder_layers: 6 beam_size: -1 # When Beam size is greater than 0, it means to use beam search when evaluation. Loss: name: NRTRLoss smoothing: True PostProcess: name: NRTRLabelDecode Metric: name: RecMetric main_indicator: acc Train: dataset: name: LMDBDataSet data_dir: ./train_data/data_lmdb_release/training/ transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - NRTRLabelEncode: # Class handling label - NRTRRecResizeImg: image_shape: [100, 32] resize_type: PIL # PIL or OpenCV - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 512 drop_last: True num_workers: 8 Eval: dataset: name: LMDBDataSet data_dir: ./train_data/data_lmdb_release/evaluation/ transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - NRTRLabelEncode: # Class handling label - NRTRRecResizeImg: image_shape: [100, 32] resize_type: PIL # PIL or OpenCV - KeepKeys: keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 256 num_workers: 1 use_shared_memory: False