Global: use_gpu: true epoch_num: 17 log_smooth_window: 20 print_batch_step: 100 save_model_dir: ./output/table_master/ save_epoch_step: 17 eval_batch_step: [0, 6259] cal_metric_during_train: true pretrained_model: null checkpoints: save_inference_dir: output/table_master/infer use_visualdl: false infer_img: ppstructure/docs/table/table.jpg save_res_path: ./output/table_master character_dict_path: ppocr/utils/dict/table_master_structure_dict.txt infer_mode: false max_text_length: &max_text_length 500 box_format: &box_format 'xywh' # 'xywh', 'xyxy', 'xyxyxyxy' d2s_train_image_shape: [3, 480, 480] Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: MultiStepDecay learning_rate: 0.001 milestones: [12, 15] gamma: 0.1 warmup_epoch: 0.02 regularizer: name: L2 factor: 0.0 Architecture: model_type: table algorithm: TableMaster Backbone: name: TableResNetExtra gcb_config: ratio: 0.0625 headers: 1 att_scale: False fusion_type: channel_add layers: [False, True, True, True] layers: [1,2,5,3] Head: name: TableMasterHead hidden_size: 512 headers: 8 dropout: 0 d_ff: 2024 max_text_length: *max_text_length loc_reg_num: &loc_reg_num 4 Loss: name: TableMasterLoss ignore_index: 42 # set to len of dict + 3 PostProcess: name: TableMasterLabelDecode box_shape: pad merge_no_span_structure: &merge_no_span_structure True Metric: name: TableMetric main_indicator: acc compute_bbox_metric: False box_format: *box_format Train: dataset: name: PubTabDataSet data_dir: train_data/table/pubtabnet/train/ label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl] transforms: - DecodeImage: img_mode: BGR channel_first: False - TableMasterLabelEncode: learn_empty_box: False merge_no_span_structure: *merge_no_span_structure replace_empty_cell_token: True loc_reg_num: *loc_reg_num max_text_length: *max_text_length - ResizeTableImage: max_len: 480 resize_bboxes: True - PaddingTableImage: size: [480, 480] - TableBoxEncode: in_box_format: *box_format out_box_format: *box_format - NormalizeImage: scale: 1./255. mean: [0.5, 0.5, 0.5] std: [0.5, 0.5, 0.5] order: hwc - ToCHWImage: null - KeepKeys: keep_keys: [image, structure, bboxes, bbox_masks, shape] loader: shuffle: True batch_size_per_card: 10 drop_last: True num_workers: 8 Eval: dataset: name: PubTabDataSet data_dir: train_data/table/pubtabnet/val/ label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl] transforms: - DecodeImage: img_mode: BGR channel_first: False - TableMasterLabelEncode: learn_empty_box: False merge_no_span_structure: *merge_no_span_structure replace_empty_cell_token: True loc_reg_num: *loc_reg_num max_text_length: *max_text_length - ResizeTableImage: max_len: 480 resize_bboxes: True - PaddingTableImage: size: [480, 480] - TableBoxEncode: in_box_format: *box_format out_box_format: *box_format - NormalizeImage: scale: 1./255. mean: [0.5, 0.5, 0.5] std: [0.5, 0.5, 0.5] order: hwc - ToCHWImage: null - KeepKeys: keep_keys: [image, structure, bboxes, bbox_masks, shape] loader: shuffle: False drop_last: False batch_size_per_card: 10 num_workers: 8