// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "glog/logging.h" #include "omp.h" #include "opencv2/core.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/imgproc.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "auto_log/autolog.h" DEFINE_bool(use_gpu, false, "Infering with GPU or CPU."); DEFINE_int32(gpu_id, 0, "Device id of GPU to execute."); DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU."); DEFINE_int32(cpu_threads, 10, "Num of threads with CPU."); DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU."); DEFINE_bool(use_tensorrt, false, "Whether use tensorrt."); DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8"); DEFINE_bool(benchmark, false, "Whether use benchmark."); DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path."); // detection related DEFINE_string(image_dir, "", "Dir of input image."); DEFINE_string(det_model_dir, "", "Path of det inference model."); DEFINE_int32(max_side_len, 960, "max_side_len of input image."); DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh."); DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh."); DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio."); DEFINE_bool(use_polygon_score, false, "Whether use polygon score."); DEFINE_bool(visualize, true, "Whether show the detection results."); // classification related DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls."); DEFINE_string(cls_model_dir, "", "Path of cls inference model."); DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh."); // recognition related DEFINE_string(rec_model_dir, "", "Path of rec inference model."); DEFINE_int32(rec_batch_num, 1, "rec_batch_num."); DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary."); using namespace std; using namespace cv; using namespace PaddleOCR; static bool PathExists(const std::string& path){ #ifdef _WIN32 struct _stat buffer; return (_stat(path.c_str(), &buffer) == 0); #else struct stat buffer; return (stat(path.c_str(), &buffer) == 0); #endif // !_WIN32 } int main_det(std::vector cv_all_img_names) { std::vector time_info = {0, 0, 0}; DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh, FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio, FLAGS_use_polygon_score, FLAGS_visualize, FLAGS_use_tensorrt, FLAGS_precision); for (int i = 0; i < cv_all_img_names.size(); ++i) { LOG(INFO) << "The predict img: " << cv_all_img_names[i]; cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR); if (!srcimg.data) { std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl; exit(1); } std::vector>> boxes; std::vector det_times; det.Run(srcimg, boxes, &det_times); time_info[0] += det_times[0]; time_info[1] += det_times[1]; time_info[2] += det_times[2]; } if (FLAGS_benchmark) { AutoLogger autolog("ocr_det", FLAGS_use_gpu, FLAGS_use_tensorrt, FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic", FLAGS_precision, time_info, cv_all_img_names.size()); autolog.report(); } return 0; } int main_rec(std::vector cv_all_img_names) { std::vector time_info = {0, 0, 0}; std::string char_list_file = FLAGS_char_list_file; if (FLAGS_benchmark) char_list_file = FLAGS_char_list_file.substr(6); cout << "label file: " << char_list_file << endl; CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn, char_list_file, FLAGS_use_tensorrt, FLAGS_precision); for (int i = 0; i < cv_all_img_names.size(); ++i) { LOG(INFO) << "The predict img: " << cv_all_img_names[i]; cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR); if (!srcimg.data) { std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl; exit(1); } std::vector rec_times; rec.Run(srcimg, &rec_times); time_info[0] += rec_times[0]; time_info[1] += rec_times[1]; time_info[2] += rec_times[2]; } if (FLAGS_benchmark) { AutoLogger autolog("ocr_rec", FLAGS_use_gpu, FLAGS_use_tensorrt, FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic", FLAGS_precision, time_info, cv_all_img_names.size()); autolog.report(); } return 0; } int main_system(std::vector cv_all_img_names) { std::vector time_info_det = {0, 0, 0}; std::vector time_info_rec = {0, 0, 0}; DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh, FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio, FLAGS_use_polygon_score, FLAGS_visualize, FLAGS_use_tensorrt, FLAGS_precision); Classifier *cls = nullptr; if (FLAGS_use_angle_cls) { cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn, FLAGS_cls_thresh, FLAGS_use_tensorrt, FLAGS_precision); } std::string char_list_file = FLAGS_char_list_file; if (FLAGS_benchmark) char_list_file = FLAGS_char_list_file.substr(6); cout << "label file: " << char_list_file << endl; CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn, char_list_file, FLAGS_use_tensorrt, FLAGS_precision); for (int i = 0; i < cv_all_img_names.size(); ++i) { LOG(INFO) << "The predict img: " << cv_all_img_names[i]; cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR); if (!srcimg.data) { std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl; exit(1); } std::vector>> boxes; std::vector det_times; std::vector rec_times; det.Run(srcimg, boxes, &det_times); time_info_det[0] += det_times[0]; time_info_det[1] += det_times[1]; time_info_det[2] += det_times[2]; cv::Mat crop_img; for (int j = 0; j < boxes.size(); j++) { crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]); if (cls != nullptr) { crop_img = cls->Run(crop_img); } rec.Run(crop_img, &rec_times); time_info_rec[0] += rec_times[0]; time_info_rec[1] += rec_times[1]; time_info_rec[2] += rec_times[2]; } } if (FLAGS_benchmark) { AutoLogger autolog_det("ocr_det", FLAGS_use_gpu, FLAGS_use_tensorrt, FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic", FLAGS_precision, time_info_det, cv_all_img_names.size()); AutoLogger autolog_rec("ocr_rec", FLAGS_use_gpu, FLAGS_use_tensorrt, FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic", FLAGS_precision, time_info_rec, cv_all_img_names.size()); autolog_det.report(); std::cout << endl; autolog_rec.report(); } return 0; } void check_params(char* mode) { if (strcmp(mode, "det")==0) { if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) { std::cout << "Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ " << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl; exit(1); } } if (strcmp(mode, "rec")==0) { if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) { std::cout << "Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ " << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl; exit(1); } } if (strcmp(mode, "system")==0) { if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) || (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) { std::cout << "Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ " << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ " << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl; std::cout << "Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ " << "--use_angle_cls=true " << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ " << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ " << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl; exit(1); } } if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" && FLAGS_precision != "int8") { cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl; exit(1); } } int main(int argc, char **argv) { if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) { std::cout << "Please choose one mode of [det, rec, system] !" << std::endl; return -1; } std::cout << "mode: " << argv[1] << endl; // Parsing command-line google::ParseCommandLineFlags(&argc, &argv, true); check_params(argv[1]); if (!PathExists(FLAGS_image_dir)) { std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl; exit(1); } std::vector cv_all_img_names; cv::glob(FLAGS_image_dir, cv_all_img_names); std::cout << "total images num: " << cv_all_img_names.size() << endl; if (strcmp(argv[1], "det")==0) { return main_det(cv_all_img_names); } if (strcmp(argv[1], "rec")==0) { return main_rec(cv_all_img_names); } if (strcmp(argv[1], "system")==0) { return main_system(cv_all_img_names); } }