#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle.fluid as fluid class SASTLoss(object): """ SAST Loss function """ def __init__(self, params=None): super(SASTLoss, self).__init__() def __call__(self, predicts, labels): """ tcl_pos: N x 128 x 3 tcl_mask: N x 128 x 1 tcl_label: N x X list or LoDTensor """ f_score = predicts['f_score'] f_border = predicts['f_border'] f_tvo = predicts['f_tvo'] f_tco = predicts['f_tco'] l_score = labels['input_score'] l_border = labels['input_border'] l_mask = labels['input_mask'] l_tvo = labels['input_tvo'] l_tco = labels['input_tco'] #score_loss intersection = fluid.layers.reduce_sum(f_score * l_score * l_mask) union = fluid.layers.reduce_sum(f_score * l_mask) + fluid.layers.reduce_sum(l_score * l_mask) score_loss = 1.0 - 2 * intersection / (union + 1e-5) #border loss l_border_split, l_border_norm = fluid.layers.split(l_border, num_or_sections=[4, 1], dim=1) f_border_split = f_border l_border_norm_split = fluid.layers.expand(x=l_border_norm, expand_times=[1, 4, 1, 1]) l_border_score = fluid.layers.expand(x=l_score, expand_times=[1, 4, 1, 1]) l_border_mask = fluid.layers.expand(x=l_mask, expand_times=[1, 4, 1, 1]) border_diff = l_border_split - f_border_split abs_border_diff = fluid.layers.abs(border_diff) border_sign = abs_border_diff < 1.0 border_sign = fluid.layers.cast(border_sign, dtype='float32') border_sign.stop_gradient = True border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \ (abs_border_diff - 0.5) * (1.0 - border_sign) border_out_loss = l_border_norm_split * border_in_loss border_loss = fluid.layers.reduce_sum(border_out_loss * l_border_score * l_border_mask) / \ (fluid.layers.reduce_sum(l_border_score * l_border_mask) + 1e-5) #tvo_loss l_tvo_split, l_tvo_norm = fluid.layers.split(l_tvo, num_or_sections=[8, 1], dim=1) f_tvo_split = f_tvo l_tvo_norm_split = fluid.layers.expand(x=l_tvo_norm, expand_times=[1, 8, 1, 1]) l_tvo_score = fluid.layers.expand(x=l_score, expand_times=[1, 8, 1, 1]) l_tvo_mask = fluid.layers.expand(x=l_mask, expand_times=[1, 8, 1, 1]) # tvo_geo_diff = l_tvo_split - f_tvo_split abs_tvo_geo_diff = fluid.layers.abs(tvo_geo_diff) tvo_sign = abs_tvo_geo_diff < 1.0 tvo_sign = fluid.layers.cast(tvo_sign, dtype='float32') tvo_sign.stop_gradient = True tvo_in_loss = 0.5 * abs_tvo_geo_diff * abs_tvo_geo_diff * tvo_sign + \ (abs_tvo_geo_diff - 0.5) * (1.0 - tvo_sign) tvo_out_loss = l_tvo_norm_split * tvo_in_loss tvo_loss = fluid.layers.reduce_sum(tvo_out_loss * l_tvo_score * l_tvo_mask) / \ (fluid.layers.reduce_sum(l_tvo_score * l_tvo_mask) + 1e-5) #tco_loss l_tco_split, l_tco_norm = fluid.layers.split(l_tco, num_or_sections=[2, 1], dim=1) f_tco_split = f_tco l_tco_norm_split = fluid.layers.expand(x=l_tco_norm, expand_times=[1, 2, 1, 1]) l_tco_score = fluid.layers.expand(x=l_score, expand_times=[1, 2, 1, 1]) l_tco_mask = fluid.layers.expand(x=l_mask, expand_times=[1, 2, 1, 1]) # tco_geo_diff = l_tco_split - f_tco_split abs_tco_geo_diff = fluid.layers.abs(tco_geo_diff) tco_sign = abs_tco_geo_diff < 1.0 tco_sign = fluid.layers.cast(tco_sign, dtype='float32') tco_sign.stop_gradient = True tco_in_loss = 0.5 * abs_tco_geo_diff * abs_tco_geo_diff * tco_sign + \ (abs_tco_geo_diff - 0.5) * (1.0 - tco_sign) tco_out_loss = l_tco_norm_split * tco_in_loss tco_loss = fluid.layers.reduce_sum(tco_out_loss * l_tco_score * l_tco_mask) / \ (fluid.layers.reduce_sum(l_tco_score * l_tco_mask) + 1e-5) # total loss tvo_lw, tco_lw = 1.5, 1.5 score_lw, border_lw = 1.0, 1.0 total_loss = score_loss * score_lw + border_loss * border_lw + \ tvo_loss * tvo_lw + tco_loss * tco_lw losses = {'total_loss':total_loss, "score_loss":score_loss,\ "border_loss":border_loss, 'tvo_loss':tvo_loss, 'tco_loss':tco_loss} return losses