Global: algorithm: SAST use_gpu: true epoch_num: 2000 log_smooth_window: 20 print_batch_step: 2 save_model_dir: ./output/det_sast/ save_epoch_step: 20 eval_batch_step: 5000 train_batch_size_per_card: 8 test_batch_size_per_card: 1 image_shape: [3, 512, 512] reader_yml: ./configs/det/det_sast_totaltext_reader.yml pretrain_weights: ./pretrain_models/ResNet50_vd_ssld_pretrained/ save_res_path: ./output/det_sast/predicts_sast.txt checkpoints: save_inference_dir: Architecture: function: ppocr.modeling.architectures.det_model,DetModel Backbone: function: ppocr.modeling.backbones.det_resnet_vd_sast,ResNet layers: 50 Head: function: ppocr.modeling.heads.det_sast_head,SASTHead model_name: large only_fpn_up: False # with_cab: False with_cab: True Loss: function: ppocr.modeling.losses.det_sast_loss,SASTLoss Optimizer: function: ppocr.optimizer,RMSProp base_lr: 0.001 decay: function: piecewise_decay boundaries: [30000, 50000, 80000, 100000, 150000] decay_rate: 0.3 PostProcess: function: ppocr.postprocess.sast_postprocess,SASTPostProcess score_thresh: 0.5 sample_pts_num: 6 nms_thresh: 0.2 expand_scale: 1.2 shrink_ratio_of_width: 0.2