[English](README.md) | 简体中文

## 简介 PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力开发者训练出更好的模型,并应用落地。
## 近期更新 - 2022.5.9 发布PaddleOCR v2.5。研发团队将于5.11~5.13带来三日直播课详细解读,扫描下文二维码入群[获取直播课链接](#开源社区)。发布内容包括: - [PP-OCRv3](./doc/doc_ch/ppocr_introduction.md#pp-ocrv3),速度可比情况下,中文场景效果相比于PP-OCRv2再提升5%,英文场景提升11%,80语种多语言模型平均识别准确率提升5%以上; - 半自动标注工具[PPOCRLabelv2](./PPOCRLabel):新增表格文字图像、图像关键信息抽取任务和不规则文字图像的标注功能; - OCR产业落地工具集:打通22种训练部署软硬件环境与方式,覆盖企业90%的训练部署环境需求 - 交互式OCR开源电子书[《动手学OCR》](./doc/doc_ch/ocr_book.md),覆盖OCR全栈技术的前沿理论与代码实践,并配套教学视频。 - 2021.12.21 发布PaddleOCR v2.4。OCR算法新增1种文本检测算法(PSENet),3种文本识别算法(NRTR、SEED、SAR);文档结构化算法新增1种关键信息提取算法(SDMGR,[文档](./ppstructure/docs/kie.md)),3种DocVQA算法(LayoutLM、LayoutLMv2,LayoutXLM,[文档](./ppstructure/vqa))。 - 2021.9.7 发布PaddleOCR v2.3与[PP-OCRv2](./doc/doc_ch/ppocr_introduction.md#pp-ocrv2),CPU推理速度相比于PP-OCR server提升220%;效果相比于PP-OCR mobile 提升7%。 - 2021.8.3 发布PaddleOCR v2.2,新增文档结构分析[PP-Structure](./ppstructure/README_ch.md)工具包,支持版面分析与表格识别(含Excel导出)。 > [更多](./doc/doc_ch/update.md) ## 特性 支持多种OCR相关前沿算法,在此基础上打造产业级特色模型[PP-OCR](./doc/doc_ch/ppocr_introduction.md)和[PP-Structure](./ppstructure/README_ch.md),并打通数据生产、模型训练、压缩、预测部署全流程。 ![](./doc/features.png) > 上述内容的使用方法建议从文档教程中的快速开始体验 ## 快速开始 - 在线网站体验:超轻量PP-OCR mobile模型体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr - 移动端demo体验:[安装包DEMO下载地址](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)(基于EasyEdge和Paddle-Lite, 支持iOS和Android系统) - 一行命令快速使用:[快速开始(中英文/多语言/文档分析)](./doc/doc_ch/quickstart.md) ## 《动手学OCR》电子书 - [《动手学OCR》电子书📚](./doc/doc_ch/ocr_book.md) ## 开源社区 - **加入社区👬:**微信扫描二维码并填写问卷之后,加入交流群领取福利 - **获取5月11-13日每晚20:30《OCR超强技术详解与产业应用实战》的直播课链接** - **10G重磅OCR学习大礼包:**《动手学OCR》电子书,配套讲解视频和notebook项目;66篇OCR相关顶会前沿论文打包放送,包括CVPR、AAAI、IJCAI、ICCV等;PaddleOCR历次发版直播课视频;OCR社区优秀开发者项目分享视频。 - **社区贡献**🏅️:[社区贡献](./doc/doc_ch/thirdparty.md)文档中包含了社区用户**使用PaddleOCR开发的各种工具、应用**以及**为PaddleOCR贡献的功能、优化的文档与代码**等,是官方为社区开发者打造的荣誉墙,也是帮助优质项目宣传的广播站。 - **社区常规赛**🎁:社区常规赛是面向OCR开发者的积分赛事,覆盖文档、代码、模型和应用四大类型,以季度为单位评选并发放奖励,赛题详情与报名方法可参考[链接](https://github.com/PaddlePaddle/PaddleOCR/issues/4982)。
## PP-OCR系列模型列表(更新中) | 模型简介 | 模型名称 | 推荐场景 | 检测模型 | 方向分类器 | 识别模型 | | ------------------------------------- | ----------------------- | --------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | 中英文超轻量PP-OCRv3模型(16.2M) | ch_PP-OCRv3_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar) | | 英文超轻量PP-OCRv3模型(13.4M) | en_PP-OCRv3_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar) | | 中英文超轻量PP-OCRv2模型(13.0M) | ch_PP-OCRv2_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) | | 中英文超轻量PP-OCR mobile模型(9.4M) | ch_ppocr_mobile_v2.0_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) | | 中英文通用PP-OCR server模型(143.4M) | ch_ppocr_server_v2.0_xx | 服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) | 更多模型下载(包括多语言),可以参考[PP-OCR 系列模型下载](./doc/doc_ch/models_list.md),文档分析相关模型参考[PP-Structure 系列模型下载](./ppstructure/docs/models_list.md) ## 文档教程 - [运行环境准备](./doc/doc_ch/environment.md) - [PP-OCR文本检测识别🔥](./doc/doc_ch/ppocr_introduction.md) - [快速开始](./doc/doc_ch/quickstart.md) - [模型库](./doc/doc_ch/models_list.md) - [模型训练](./doc/doc_ch/training.md) - [文本检测](./doc/doc_ch/detection.md) - [文本识别](./doc/doc_ch/recognition.md) - [文本方向分类器](./doc/doc_ch/angle_class.md) - 模型压缩 - [模型量化](./deploy/slim/quantization/README.md) - [模型裁剪](./deploy/slim/prune/README.md) - [知识蒸馏](./doc/doc_ch/knowledge_distillation.md) - [推理部署](./deploy/README_ch.md) - [基于Python预测引擎推理](./doc/doc_ch/inference_ppocr.md) - [基于C++预测引擎推理](./deploy/cpp_infer/readme.md) - [服务化部署](./deploy/pdserving/README_CN.md) - [端侧部署](./deploy/lite/readme.md) - [Paddle2ONNX模型转化与预测](./deploy/paddle2onnx/readme.md) - [Benchmark](./doc/doc_ch/benchmark.md) - [PP-Structure文档分析🔥](./ppstructure/README_ch.md) - [快速开始](./ppstructure/docs/quickstart.md) - [模型库](./ppstructure/docs/models_list.md) - [模型训练](./doc/doc_ch/training.md) - [版面分析](./ppstructure/layout/README_ch.md) - [表格识别](./ppstructure/table/README_ch.md) - [关键信息提取](./ppstructure/docs/kie.md) - [DocVQA](./ppstructure/vqa/README_ch.md) - [推理部署](./deploy/README_ch.md) - [基于Python预测引擎推理](./ppstructure/docs/inference.md) - [基于C++预测引擎推理]() - [服务化部署](./deploy/pdserving/README_CN.md) - [前沿算法与模型🚀](./doc/doc_ch/algorithm.md) - [文本检测算法](./doc/doc_ch/algorithm_overview.md#11-%E6%96%87%E6%9C%AC%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95) - [文本识别算法](./doc/doc_ch/algorithm_overview.md#12-%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95) - [端到端算法](./doc/doc_ch/algorithm_overview.md#2-%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95) - [使用PaddleOCR架构添加新算法](./doc/doc_ch/add_new_algorithm.md) - [场景应用](./doc/doc_ch/application.md) - [金融场景(表单/票据等)]() - [工业场景(电表度数/车牌等)]() - [教育场景(手写体/公式等)]() - [医疗场景(化验单等)]() - 数据标注与合成 - [半自动标注工具PPOCRLabel](./PPOCRLabel/README_ch.md) - [数据合成工具Style-Text](./StyleText/README_ch.md) - [其它数据标注工具](./doc/doc_ch/data_annotation.md) - [其它数据合成工具](./doc/doc_ch/data_synthesis.md) - 数据集 - [通用中英文OCR数据集](doc/doc_ch/dataset/datasets.md) - [手写中文OCR数据集](doc/doc_ch/dataset/handwritten_datasets.md) - [垂类多语言OCR数据集](doc/doc_ch/dataset/vertical_and_multilingual_datasets.md) - [版面分析数据集](doc/doc_ch/dataset/layout_datasets.md) - [表格识别数据集](doc/doc_ch/dataset/table_datasets.md) - [DocVQA数据集](doc/doc_ch/dataset/docvqa_datasets.md) - [代码组织结构](./doc/doc_ch/tree.md) - [效果展示](#效果展示) - [《动手学OCR》电子书📚](./doc/doc_ch/ocr_book.md) - [开源社区](#开源社区) - FAQ - [通用问题](./doc/doc_ch/FAQ.md) - [PaddleOCR实战问题](./doc/doc_ch/FAQ.md) - [参考文献](./doc/doc_ch/reference.md) - [许可证书](#许可证书) ## 效果展示 [more](./doc/doc_ch/visualization.md)
PP-OCRv3 中文模型
PP-OCRv3 英文模型
PP-OCRv3 多语言模型
PP-Structure 文档分析 - 版面分析+表格识别
- SER(语义实体识别)
- RE(关系提取)
## 许可证书 本项目的发布受Apache 2.0 license许可认证。