# RARE - [1. 算法简介](#1) - [2. 环境配置](#2) - [3. 模型训练、评估、预测](#3) - [3.1 训练](#3-1) - [3.2 评估](#3-2) - [3.3 预测](#3-3) - [4. 推理部署](#4) - [4.1 Python推理](#4-1) - [4.2 C++推理](#4-2) - [4.3 Serving服务化部署](#4-3) - [4.4 更多推理部署](#4-4) - [5. FAQ](#5) ## 1. 算法简介 论文信息: > [Robust Scene Text Recognition with Automatic Rectification](https://arxiv.org/abs/1603.03915v2) > Baoguang Shi, Xinggang Wang, Pengyuan Lyu, Cong Yao, Xiang Bai∗ > CVPR, 2016 使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法复现效果如下: |模型|骨干网络|配置文件|Avg Accuracy|下载链接| | --- | --- | --- | --- | --- | |RARE|Resnet34_vd|[configs/rec/rec_r34_vd_tps_bilstm_att.yml](../../configs/rec/rec_r34_vd_tps_bilstm_att.yml)|83.6%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)| |RARE|MobileNetV3|[configs/rec/rec_mv3_tps_bilstm_att.yml](../../configs/rec/rec_mv3_tps_bilstm_att.yml)|82.5%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)| ## 2. 环境配置 请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。 ## 3. 模型训练、评估、预测 请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练不同的识别模型只需要**更换配置文件**即可。以基于Resnet34_vd骨干网络为例: ### 3.1 训练 ``` #单卡训练(训练周期长,不建议) python3 tools/train.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml #多卡训练,通过--gpus参数指定卡号 python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml ``` ### 3.2 评估 ``` # GPU评估, Global.pretrained_model为待评估模型 python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy ``` ### 3.3 预测 ``` python3 tools/infer_rec.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png ``` ## 4. 推理部署 ### 4.1 Python推理 首先将RARE文本识别训练过程中保存的模型,转换成inference model。以基于Resnet34_vd骨干网络,在MJSynth和SynthText两个文字识别数据集训练得到的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar) ),可以使用如下命令进行转换: ```shell python3 tools/export_model.py -c configs/rec/rec_r34_vd_tps_bilstm_att.yml -o Global.pretrained_model=./rec_r34_vd_tps_bilstm_att_v2.0_train/best_accuracy Global.save_inference_dir=./inference/rec_rare ``` RARE文本识别模型推理,可以执行如下命令: ```shell python3 tools/infer/predict_rec.py --image_dir="doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_rare/" --rec_image_shape="3, 32, 100" --rec_char_dict_path="./ppocr/utils/ic15_dict.txt" ``` 推理结果如下所示: ![](../../doc/imgs_words/en/word_1.png) ``` Predicts of doc/imgs_words/en/word_1.png:('joint ', 0.9999969601631165) ``` ### 4.2 C++推理 暂不支持 ### 4.3 Serving服务化部署 暂不支持 ### 4.4 更多推理部署 RARE模型还支持以下推理部署方式: - Paddle2ONNX推理:准备好推理模型后,参考[paddle2onnx](../../deploy/paddle2onnx/)教程操作。 ## 5. FAQ ## 引用 ```bibtex @inproceedings{2016Robust, title={Robust Scene Text Recognition with Automatic Rectification}, author={ Shi, B. and Wang, X. and Lyu, P. and Cong, Y. and Xiang, B. }, booktitle={2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2016}, } ```