# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from paddle.optimizer import lr as lr_scheduler class Linear(object): """ Linear learning rate decay Args: lr (float): The initial learning rate. It is a python float number. epochs(int): The decay step size. It determines the decay cycle. end_lr(float, optional): The minimum final learning rate. Default: 0.0001. power(float, optional): Power of polynomial. Default: 1.0. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, lr, epochs, step_each_epoch, end_lr=0.0, power=1.0, warmup_epoch=0, last_epoch=-1, **kwargs): super(Linear, self).__init__() self.lr = lr self.epochs = epochs * step_each_epoch self.end_lr = end_lr self.power = power self.last_epoch = last_epoch self.warmup_epoch = warmup_epoch * step_each_epoch def __call__(self): learning_rate = lr_scheduler.PolynomialLR( learning_rate=self.lr, decay_steps=self.epochs, end_lr=self.end_lr, power=self.power, last_epoch=self.last_epoch) if self.warmup_epoch > 0: learning_rate = lr_scheduler.LinearLrWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, end_lr=self.lr, last_epoch=self.last_epoch) return learning_rate class Cosine(object): """ Cosine learning rate decay lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1) Args: lr(float): initial learning rate step_each_epoch(int): steps each epoch epochs(int): total training epochs last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, lr, step_each_epoch, epochs, warmup_epoch=0, last_epoch=-1, **kwargs): super(Cosine, self).__init__() self.lr = lr self.T_max = step_each_epoch * epochs self.last_epoch = last_epoch self.warmup_epoch = warmup_epoch * step_each_epoch def __call__(self): learning_rate = lr_scheduler.CosineAnnealingLR( learning_rate=self.lr, T_max=self.T_max, last_epoch=self.last_epoch) if self.warmup_epoch > 0: learning_rate = lr_scheduler.LinearLrWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, end_lr=self.lr, last_epoch=self.last_epoch) return learning_rate class Step(object): """ Piecewise learning rate decay Args: step_each_epoch(int): steps each epoch learning_rate (float): The initial learning rate. It is a python float number. step_size (int): the interval to update. gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . It should be less than 1.0. Default: 0.1. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, lr, step_size, step_each_epoch, gamma, warmup_epoch=0, last_epoch=-1, **kwargs): super(Step, self).__init__() self.step_size = step_each_epoch * step_size self.lr = lr self.gamma = gamma self.last_epoch = last_epoch self.warmup_epoch = warmup_epoch * step_each_epoch def __call__(self): learning_rate = lr_scheduler.StepLR( learning_rate=self.lr, step_size=self.step_size, gamma=self.gamma, last_epoch=self.last_epoch) if self.warmup_epoch > 0: learning_rate = lr_scheduler.LinearLrWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, end_lr=self.lr, last_epoch=self.last_epoch) return learning_rate class Piecewise(object): """ Piecewise learning rate decay Args: boundaries(list): A list of steps numbers. The type of element in the list is python int. values(list): A list of learning rate values that will be picked during different epoch boundaries. The type of element in the list is python float. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, step_each_epoch, decay_epochs, values, warmup_epoch=0, last_epoch=-1, **kwargs): super(Piecewise, self).__init__() self.boundaries = [step_each_epoch * e for e in decay_epochs] self.values = values self.last_epoch = last_epoch self.warmup_epoch = warmup_epoch * step_each_epoch def __call__(self): learning_rate = lr_scheduler.PiecewiseLR( boundaries=self.boundaries, values=self.values, last_epoch=self.last_epoch) if self.warmup_epoch > 0: learning_rate = lr_scheduler.LinearLrWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, end_lr=self.values[0], last_epoch=self.last_epoch) return learning_rate