# PP-Structure 快速开始
- [1. 安装依赖包](#1)
- [2. 便捷使用](#2)
- [2.1 命令行使用](#21)
- [2.1.1 版面分析+表格识别](#211)
- [2.1.2 版面分析](#212)
- [2.1.3 表格识别](#213)
- [2.1.4 DocVQA](#214)
- [2.2 代码使用](#22)
- [2.2.1 版面分析+表格识别](#221)
- [2.2.2 版面分析](#222)
- [2.2.3 表格识别](#223)
- [2.2.4 DocVQA](#224)
- [2.3 返回结果说明](#23)
- [2.3.1 版面分析+表格识别](#231)
- [2.3.2 DocVQA](#232)
- [2.4 参数说明](#24)
## 1. 安装依赖包
```bash
# 安装 paddleocr,推荐使用2.5+版本
pip3 install "paddleocr>=2.5"
# 安装 版面分析依赖包layoutparser(如不需要版面分析功能,可跳过)
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
# 安装 DocVQA依赖包paddlenlp(如不需要DocVQA功能,可跳过)
pip install paddlenlp
```
## 2. 便捷使用
### 2.1 命令行使用
#### 2.1.1 版面分析+表格识别
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure
```
#### 2.1.2 版面分析
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --table=false --ocr=false
```
#### 2.1.3 表格识别
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/table.jpg --type=structure --layout=false
```
#### 2.1.4 DocVQA
请参考:[文档视觉问答](../vqa/README.md)。
### 2.2 代码使用
#### 2.2.1 版面分析+表格识别
```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res
table_engine = PPStructure(show_log=True)
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
from PIL import Image
font_path = 'PaddleOCR/doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
#### 2.2.2 版面分析
```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
table_engine = PPStructure(table=False, ocr=False, show_log=True)
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
```
#### 2.2.3 表格识别
```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
table_engine = PPStructure(layout=False, show_log=True)
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/table.jpg'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])
for line in result:
line.pop('img')
print(line)
```
#### 2.2.4 DocVQA
请参考:[文档视觉问答](../vqa/README.md)。
### 2.3 返回结果说明
PP-Structure的返回结果为一个dict组成的list,示例如下
#### 2.3.1 版面分析+表格识别
```shell
[
{ 'type': 'Text',
'bbox': [34, 432, 345, 462],
'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
[('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent ', 0.465441)])
}
]
```
dict 里各个字段说明如下
| 字段 | 说明 |
| --------------- |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|type| 图片区域的类型 |
|bbox| 图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y] |
|res| 图片区域的OCR或表格识别结果。
表格: 一个dict,字段说明如下
`html`: 表格的HTML字符串
在代码使用模式下,前向传入return_ocr_result_in_table=True可以拿到表格中每个文本的检测识别结果,对应为如下字段:
`boxes`: 文本检测坐标
`rec_res`: 文本识别结果。
OCR: 一个包含各个单行文字的检测坐标和识别结果的元组 |
运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名为表格在图片里的坐标。
```
/output/table/1/
└─ res.txt
└─ [454, 360, 824, 658].xlsx 表格识别结果
└─ [16, 2, 828, 305].jpg 被裁剪出的图片区域
└─ [17, 361, 404, 711].xlsx 表格识别结果
```
#### 2.3.2 DocVQA
请参考:[文档视觉问答](../vqa/README.md)。
### 2.4 参数说明
| 字段 | 说明 | 默认值 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| output | excel和识别结果保存的地址 | ./output/table |
| table_max_len | 表格结构模型预测时,图像的长边resize尺度 | 488 |
| table_model_dir | 表格结构模型 inference 模型地址 | None |
| table_char_dict_path | 表格结构模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.txt |
| layout_path_model | 版面分析模型模型地址,可以为在线地址或者本地地址,当为本地地址时,需要指定 layout_label_map, 命令行模式下可通过--layout_label_map='{0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"}' 指定 | lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config |
| layout_label_map | 版面分析模型模型label映射字典 | None |
| model_name_or_path | VQA SER模型地址 | None |
| max_seq_length | VQA SER模型最大支持token长度 | 512 |
| label_map_path | VQA SER 标签文件地址 | ./vqa/labels/labels_ser.txt |
| mode | pipeline预测模式,structure: 版面分析+表格识别; VQA: SER文档信息抽取 | structure |
| layout | 前向中是否执行版面分析 | True |
| table | 前向中是否执行表格识别 | True |
| ocr | 对于版面分析中的非表格区域,是否执行ocr。当layout为False时会被自动设置为False | True |
大部分参数和PaddleOCR whl包保持一致,见 [whl包文档](../../doc/doc_ch/whl.md)