# -*- coding:utf-8 -*- # Author: RubanSeven # Reference: https://github.com/RubanSeven/Text-Image-Augmentation-python # import cv2 import numpy as np from .warp_mls import WarpMLS def tia_distort(src, segment=4): img_h, img_w = src.shape[:2] cut = img_w // segment thresh = cut // 3 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([np.random.randint(thresh), np.random.randint(thresh)]) dst_pts.append( [img_w - np.random.randint(thresh), np.random.randint(thresh)]) dst_pts.append( [img_w - np.random.randint(thresh), img_h - np.random.randint(thresh)]) dst_pts.append( [np.random.randint(thresh), img_h - np.random.randint(thresh)]) half_thresh = thresh * 0.5 for cut_idx in np.arange(1, segment, 1): src_pts.append([cut * cut_idx, 0]) src_pts.append([cut * cut_idx, img_h]) dst_pts.append([ cut * cut_idx + np.random.randint(thresh) - half_thresh, np.random.randint(thresh) - half_thresh ]) dst_pts.append([ cut * cut_idx + np.random.randint(thresh) - half_thresh, img_h + np.random.randint(thresh) - half_thresh ]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst def tia_stretch(src, segment=4): img_h, img_w = src.shape[:2] cut = img_w // segment thresh = cut * 4 // 5 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([0, 0]) dst_pts.append([img_w, 0]) dst_pts.append([img_w, img_h]) dst_pts.append([0, img_h]) half_thresh = thresh * 0.5 for cut_idx in np.arange(1, segment, 1): move = np.random.randint(thresh) - half_thresh src_pts.append([cut * cut_idx, 0]) src_pts.append([cut * cut_idx, img_h]) dst_pts.append([cut * cut_idx + move, 0]) dst_pts.append([cut * cut_idx + move, img_h]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst def tia_perspective(src): img_h, img_w = src.shape[:2] thresh = img_h // 2 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([0, np.random.randint(thresh)]) dst_pts.append([img_w, np.random.randint(thresh)]) dst_pts.append([img_w, img_h - np.random.randint(thresh)]) dst_pts.append([0, img_h - np.random.randint(thresh)]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst