# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..')))

from ppocr.modeling.backbones.det_mobilenet_v3 import SEModule, ConvBNLayer


class DBFPN(nn.Layer):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(DBFPN, self).__init__()
        self.out_channels = out_channels
        weight_attr = paddle.nn.initializer.KaimingUniform()

        self.in2_conv = nn.Conv2D(
            in_channels=in_channels[0],
            out_channels=self.out_channels,
            kernel_size=1,
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.in3_conv = nn.Conv2D(
            in_channels=in_channels[1],
            out_channels=self.out_channels,
            kernel_size=1,
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.in4_conv = nn.Conv2D(
            in_channels=in_channels[2],
            out_channels=self.out_channels,
            kernel_size=1,
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.in5_conv = nn.Conv2D(
            in_channels=in_channels[3],
            out_channels=self.out_channels,
            kernel_size=1,
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.p5_conv = nn.Conv2D(
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.p4_conv = nn.Conv2D(
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.p3_conv = nn.Conv2D(
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.p2_conv = nn.Conv2D(
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.in5_conv(c5)
        in4 = self.in4_conv(c4)
        in3 = self.in3_conv(c3)
        in2 = self.in2_conv(c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        p5 = self.p5_conv(in5)
        p4 = self.p4_conv(out4)
        p3 = self.p3_conv(out3)
        p2 = self.p2_conv(out2)
        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse


class CALayer(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
        super(CALayer, self).__init__()
        weight_attr = paddle.nn.initializer.KaimingUniform()
        self.out_channels = out_channels
        self.in_conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=self.out_channels,
            kernel_size=kernel_size,
            padding=int(kernel_size // 2),
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.se_block = SEModule(self.out_channels)
        self.shortcut = shortcut

    def forward(self, ins):
        x = self.in_conv(ins)
        if self.shortcut:
            out = x + self.se_block(x)
        else:
            out = self.se_block(x)
        return out


class CAFPN(nn.Layer):
    def __init__(self, in_channels, out_channels, shortcut=True, **kwargs):
        super(CAFPN, self).__init__()
        self.out_channels = out_channels
        self.ins_conv = []
        self.inp_conv = []

        for i in range(len(in_channels)):
            self.ins_conv.append(
                CALayer(
                    in_channels[i],
                    out_channels,
                    kernel_size=1,
                    shortcut=shortcut))
            self.inp_conv.append(
                CALayer(
                    out_channels,
                    out_channels // 4,
                    kernel_size=3,
                    shortcut=shortcut))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        p5 = self.inp_conv[3](in5)
        p4 = self.inp_conv[2](out4)
        p3 = self.inp_conv[1](out3)
        p2 = self.inp_conv[0](out2)

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse


class FEPAN(nn.Layer):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(FEPAN, self).__init__()
        self.out_channels = out_channels
        weight_attr = paddle.nn.initializer.KaimingUniform()

        self.ins_conv = []
        self.inp_conv = []
        # pan head
        self.pan_head_conv = []
        self.pan_lat_conv = []

        for i in range(len(in_channels)):
            self.ins_conv.append(
                nn.Conv2D(
                    in_channels=in_channels[0],
                    out_channels=self.out_channels,
                    kernel_size=1,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

            self.inp_conv.append(
                ConvBNLayer(
                    in_channels=self.out_channels,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4))

            if i > 0:
                self.pan_head_conv.append(
                    nn.Conv2D(
                        in_channels=self.out_channels // 4,
                        out_channels=self.out_channels // 4,
                        kernel_size=3,
                        padding=1,
                        stride=2,
                        weight_attr=ParamAttr(initializer=weight_attr),
                        bias_attr=False))
            self.pan_lat_conv.append(
                ConvBNLayer(
                    in_channels=self.out_channels // 4,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        f5 = self.inp_conv[3](in5)
        f4 = self.inp_conv[2](out4)
        f3 = self.inp_conv[1](out3)
        f2 = self.inp_conv[0](out2)

        pan3 = f3 + self.pan_head[0](f2)
        pan4 = f4 + self.pan_head[1](pan3)
        pan5 = f5 + self.pan_head[2](pan4)

        p2 = self.pan_lat[0](f2)
        p3 = self.pan_lat[1](pan3)
        p4 = self.pan_lat[2](pan4)
        p5 = self.pan_lat[3](pan5)

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse