# DB - [1. 算法简介](#1) - [2. 环境配置](#2) - [3. 快速使用](#3) - [4. 模型训练、评估、预测](#4) - [5. 推理部署](#5) - [6. FAQ](#6) ## 1. 算法简介 论文信息: > [Real-time Scene Text Detection with Differentiable Binarization](https://arxiv.org/abs/1911.08947) > Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang > AAAI, 2020 在ICDAR2015文本检测公开数据集上,算法复现效果如下: |模型|骨干网络|precision|recall|Hmean|下载链接| | --- | --- | --- | --- | --- | --- | |DB|ResNet50_vd|86.41%|78.72%|82.38%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)| |DB|MobileNetV3|77.29%|73.08%|75.12%|[训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)| ## 2. 环境配置 请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目 ## 3. 快速使用 参考本节,可以直接下载训好的模型,进行基于训练引擎的模型预测。 ### 训练模型下载 根据第1节给出的模型列表,选择下载训练模型: ```bash mkdir trained_models && cd trained_models wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar && tar xf det_mv3_db_v2.0_train.tar cd .. ``` * windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下 解压完毕后应有如下文件结构: ``` ├── det_mv3_db_v2.0_train │ ├── best_accuracy.states │ ├── best_accuracy.pdparams │ ├── best_accuracy.pdopt │ └── train.log ``` ### 单张图像或者图像集合预测 ```bash # 预测image_dir指定的单张图像 python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext" # 预测image_dir指定的图像集合 python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext" # 如果想使用CPU进行预测,需设置use_gpu参数为False python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e_server_pgnetA_infer/" --e2e_pgnet_valid_set="totaltext" --use_gpu=False ``` ### 可视化结果 可视化文本检测结果默认保存到./inference_results文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下: ![](../imgs_results/e2e_res_img623_pgnet.jpg) ## 4. 模型训练、评估、预测 ### 4.1 训练 ### 4.2 评估 ### 4.3 预测 ## 5. 推理部署 ### 5.1 Python推理 首先将DB文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar) ),可以使用如下命令进行转换: ``` python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_db ``` DB文本检测模型推理,可以执行如下命令: ``` python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_db/" ``` 可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下: ![](../imgs_results/det_res_img_10_db.jpg) **注意**:由于ICDAR2015数据集只有1000张训练图像,且主要针对英文场景,所以上述模型对中文文本图像检测效果会比较差。 ### 5.2 C++推理 敬请期待 ### 5.3 Serving服务化部署 敬请期待 ### 5.4 Paddle2ONNX推理 敬请期待 ## 6. FAQ ## 引用 ```bibtex @inproceedings{liao2020real, title={Real-time scene text detection with differentiable binarization}, author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={34}, number={07}, pages={11474--11481}, year={2020} } ```