Global: use_gpu: True epoch_num: &epoch_num 200 log_smooth_window: 10 print_batch_step: 10 save_model_dir: ./output/re_layoutlmv2/ save_epoch_step: 2000 # evaluation is run every 10 iterations after the 0th iteration eval_batch_step: [ 0, 19 ] cal_metric_during_train: False save_inference_dir: use_visualdl: False seed: 2048 infer_img: doc/vqa/input/zh_val_21.jpg save_res_path: ./output/re/ Architecture: model_type: vqa algorithm: &algorithm "LayoutLMv2" Transform: Backbone: name: LayoutLMv2ForRe pretrained: True checkpoints: Loss: name: LossFromOutput key: loss reduction: mean Optimizer: name: AdamW beta1: 0.9 beta2: 0.999 clip_norm: 10 lr: name: Piecewise values: [0.000005, 0.00005] decay_epochs: [10] warmup_epoch: 0 regularizer: name: L2 factor: 0.00000 PostProcess: name: VQAReTokenLayoutLMPostProcess Metric: name: VQAReTokenMetric main_indicator: hmean Train: dataset: name: SimpleDataSet data_dir: train_data/XFUND/zh_train/image label_file_list: - train_data/XFUND/zh_train/xfun_normalize_train.json ratio_list: [ 1.0 ] transforms: - DecodeImage: # load image img_mode: RGB channel_first: False - VQATokenLabelEncode: # Class handling label contains_re: True algorithm: *algorithm class_path: &class_path ppstructure/vqa/labels/labels_ser.txt - VQATokenPad: max_seq_len: &max_seq_len 512 return_attention_mask: True - VQAReTokenRelation: - VQAReTokenChunk: max_seq_len: *max_seq_len - Resize: size: [224,224] - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - ToCHWImage: - KeepKeys: keep_keys: [ 'input_ids', 'bbox', 'image', 'attention_mask', 'token_type_ids','entities', 'relations'] # dataloader will return list in this order loader: shuffle: True drop_last: False batch_size_per_card: 8 num_workers: 8 collate_fn: ListCollator Eval: dataset: name: SimpleDataSet data_dir: train_data/XFUND/zh_val/image label_file_list: - train_data/XFUND/zh_val/xfun_normalize_val.json transforms: - DecodeImage: # load image img_mode: RGB channel_first: False - VQATokenLabelEncode: # Class handling label contains_re: True algorithm: *algorithm class_path: *class_path - VQATokenPad: max_seq_len: *max_seq_len return_attention_mask: True - VQAReTokenRelation: - VQAReTokenChunk: max_seq_len: *max_seq_len - Resize: size: [224,224] - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - ToCHWImage: - KeepKeys: keep_keys: [ 'input_ids', 'bbox', 'image', 'attention_mask', 'token_type_ids','entities', 'relations'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 8 num_workers: 8 collate_fn: ListCollator