# 基于PP-OCRv3的手写文字识别 - [1. 项目背景及意义](#1-项目背景及意义) - [2. 项目内容](#2-项目内容) - [3. PP-OCRv3识别算法介绍](#3-PP-OCRv3识别算法介绍) - [4. 安装环境](#4-安装环境) - [5. 数据准备](#5-数据准备) - [6. 模型训练](#6-模型训练) - [6.1 下载预训练模型](#61-下载预训练模型) - [6.2 修改配置文件](#62-修改配置文件) - [6.3 开始训练](#63-开始训练) - [7. 模型评估](#7-模型评估) - [8. 模型导出推理](#8-模型导出推理) - [8.1 模型导出](#81-模型导出) - [8.2 模型推理](#82-模型推理) ## 1. 项目背景及意义 目前光学字符识别(OCR)技术在我们的生活当中被广泛使用,但是大多数模型在通用场景下的准确性还有待提高。针对于此我们借助飞桨提供的PaddleOCR套件较容易的实现了在垂类场景下的应用。手写体在日常生活中较为常见,然而手写体的识别却存在着很大的挑战,因为每个人的手写字体风格不一样,这对于视觉模型来说还是相当有挑战的。因此训练一个手写体识别模型具有很好的现实意义。下面给出一些手写体的示例图: ![example](https://ai-studio-static-online.cdn.bcebos.com/7a8865b2836f42d382e7c3fdaedc4d307d797fa2bcd0466e9f8b7705efff5a7b) ## 2. 项目内容 本项目基于PaddleOCR套件,以PP-OCRv3识别模型为基础,针对手写文字识别场景进行优化。 Aistudio项目链接:[OCR手写文字识别](https://aistudio.baidu.com/aistudio/projectdetail/4330587) ## 3. PP-OCRv3识别算法介绍 PP-OCRv3的识别模块是基于文本识别算法[SVTR](https://arxiv.org/abs/2205.00159)优化。SVTR不再采用RNN结构,通过引入Transformers结构更加有效地挖掘文本行图像的上下文信息,从而提升文本识别能力。如下图所示,PP-OCRv3采用了6个优化策略。 ![v3_rec](https://ai-studio-static-online.cdn.bcebos.com/d4f5344b5b854d50be738671598a89a45689c6704c4d481fb904dd7cf72f2a1a) 优化策略汇总如下: * SVTR_LCNet:轻量级文本识别网络 * GTC:Attention指导CTC训练策略 * TextConAug:挖掘文字上下文信息的数据增广策略 * TextRotNet:自监督的预训练模型 * UDML:联合互学习策略 * UIM:无标注数据挖掘方案 详细优化策略描述请参考[PP-OCRv3优化策略](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/doc/doc_ch/PP-OCRv3_introduction.md#3-%E8%AF%86%E5%88%AB%E4%BC%98%E5%8C%96) ## 4. 安装环境 ```python # 首先git官方的PaddleOCR项目,安装需要的依赖 git clone https://github.com/PaddlePaddle/PaddleOCR.git cd PaddleOCR pip install -r requirements.txt ``` ## 5. 数据准备 本项目使用公开的手写文本识别数据集,包含Chinese OCR, 中科院自动化研究所-手写中文数据集[CASIA-HWDB2.x](http://www.nlpr.ia.ac.cn/databases/handwriting/Download.html),以及由中科院手写数据和网上开源数据合并组合的[数据集](https://aistudio.baidu.com/aistudio/datasetdetail/102884/0)等,该项目已经挂载处理好的数据集,可直接下载使用进行训练。 ```python 下载并解压数据 tar -xf hw_data.tar ``` ## 6. 模型训练 ### 6.1 下载预训练模型 首先需要下载我们需要的PP-OCRv3识别预训练模型,更多选择请自行选择其他的[文字识别模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/doc/doc_ch/models_list.md#2-%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E6%A8%A1%E5%9E%8B) ```python # 使用该指令下载需要的预训练模型 wget -P ./pretrained_models/ https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_train.tar # 解压预训练模型文件 tar -xf ./pretrained_models/ch_PP-OCRv3_rec_train.tar -C pretrained_models ``` ### 6.2 修改配置文件 我们使用`configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml`,主要修改训练轮数和学习率参相关参数,设置预训练模型路径,设置数据集路径。 另外,batch_size可根据自己机器显存大小进行调整。 具体修改如下几个地方: ``` epoch_num: 100 # 训练epoch数 save_model_dir: ./output/ch_PP-OCR_v3_rec save_epoch_step: 10 eval_batch_step: [0, 100] # 评估间隔,每隔100step评估一次 pretrained_model: ./pretrained_models/ch_PP-OCRv3_rec_train/best_accuracy # 预训练模型路径 lr: name: Cosine # 修改学习率衰减策略为Cosine learning_rate: 0.0001 # 修改fine-tune的学习率 warmup_epoch: 2 # 修改warmup轮数 Train: dataset: name: SimpleDataSet data_dir: ./train_data # 训练集图片路径 ext_op_transform_idx: 1 label_file_list: - ./train_data/chineseocr-data/rec_hand_line_all_label_train.txt # 训练集标签 - ./train_data/handwrite/HWDB2.0Train_label.txt - ./train_data/handwrite/HWDB2.1Train_label.txt - ./train_data/handwrite/HWDB2.2Train_label.txt - ./train_data/handwrite/hwdb_ic13/handwriting_hwdb_train_labels.txt - ./train_data/handwrite/HW_Chinese/train_hw.txt ratio_list: - 0.1 - 1.0 - 1.0 - 1.0 - 0.02 - 1.0 loader: shuffle: true batch_size_per_card: 64 drop_last: true num_workers: 4 Eval: dataset: name: SimpleDataSet data_dir: ./train_data # 测试集图片路径 label_file_list: - ./train_data/chineseocr-data/rec_hand_line_all_label_val.txt # 测试集标签 - ./train_data/handwrite/HWDB2.0Test_label.txt - ./train_data/handwrite/HWDB2.1Test_label.txt - ./train_data/handwrite/HWDB2.2Test_label.txt - ./train_data/handwrite/hwdb_ic13/handwriting_hwdb_val_labels.txt - ./train_data/handwrite/HW_Chinese/test_hw.txt loader: shuffle: false drop_last: false batch_size_per_card: 64 num_workers: 4 ``` 由于数据集大多是长文本,因此需要**注释**掉下面的数据增广策略,以便训练出更好的模型。 ``` - RecConAug: prob: 0.5 ext_data_num: 2 image_shape: [48, 320, 3] ``` ### 6.3 开始训练 我们使用上面修改好的配置文件`configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml`,预训练模型,数据集路径,学习率,训练轮数等都已经设置完毕后,可以使用下面命令开始训练。 ```python # 开始训练识别模型 python tools/train.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml ``` ## 7. 模型评估 在训练之前,我们可以直接使用下面命令来评估预训练模型的效果: ```python # 评估预训练模型 python tools/eval.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml -o Global.pretrained_model="./pretrained_models/ch_PP-OCRv3_rec_train/best_accuracy" ``` ``` [2022/07/14 10:46:22] ppocr INFO: load pretrain successful from ./pretrained_models/ch_PP-OCRv3_rec_train/best_accuracy eval model:: 100%|████████████████████████████| 687/687 [03:29<00:00, 3.27it/s] [2022/07/14 10:49:52] ppocr INFO: metric eval *************** [2022/07/14 10:49:52] ppocr INFO: acc:0.03724954461811258 [2022/07/14 10:49:52] ppocr INFO: norm_edit_dis:0.4859541065843199 [2022/07/14 10:49:52] ppocr INFO: Teacher_acc:0.0371584699368947 [2022/07/14 10:49:52] ppocr INFO: Teacher_norm_edit_dis:0.48718814890536477 [2022/07/14 10:49:52] ppocr INFO: fps:947.8562684823883 ``` 可以看出,直接加载预训练模型进行评估,效果较差,因为预训练模型并不是基于手写文字进行单独训练的,所以我们需要基于预训练模型进行finetune。 训练完成后,可以进行测试评估,评估命令如下: ```python # 评估finetune效果 python tools/eval.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml -o Global.pretrained_model="./output/ch_PP-OCR_v3_rec/best_accuracy" ``` 评估结果如下,可以看出识别准确率为54.3%。 ``` [2022/07/14 10:54:06] ppocr INFO: metric eval *************** [2022/07/14 10:54:06] ppocr INFO: acc:0.5430100180913 [2022/07/14 10:54:06] ppocr INFO: norm_edit_dis:0.9203322593158589 [2022/07/14 10:54:06] ppocr INFO: Teacher_acc:0.5401183969626324 [2022/07/14 10:54:06] ppocr INFO: Teacher_norm_edit_dis:0.919827504507755 [2022/07/14 10:54:06] ppocr INFO: fps:928.948733797251 ``` 如需获取已训练模型,请扫码填写问卷,加入PaddleOCR官方交流群获取全部OCR垂类模型下载链接、《动手学OCR》电子书等全套OCR学习资料🎁