# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import cv2 import time def resize_image(im, max_side_len=512): """ resize image to a size multiple of max_stride which is required by the network :param im: the resized image :param max_side_len: limit of max image size to avoid out of memory in gpu :return: the resized image and the resize ratio """ h, w, _ = im.shape resize_w = w resize_h = h # Fix the longer side if resize_h > resize_w: ratio = float(max_side_len) / resize_h else: ratio = float(max_side_len) / resize_w resize_h = int(resize_h * ratio) resize_w = int(resize_w * ratio) max_stride = 128 resize_h = (resize_h + max_stride - 1) // max_stride * max_stride resize_w = (resize_w + max_stride - 1) // max_stride * max_stride im = cv2.resize(im, (int(resize_w), int(resize_h))) ratio_h = resize_h / float(h) ratio_w = resize_w / float(w) return im, (ratio_h, ratio_w) def resize_image_min(im, max_side_len=512): """ """ # print('--> Using resize_image_min') h, w, _ = im.shape resize_w = w resize_h = h # Fix the longer side if resize_h < resize_w: ratio = float(max_side_len) / resize_h else: ratio = float(max_side_len) / resize_w resize_h = int(resize_h * ratio) resize_w = int(resize_w * ratio) max_stride = 128 resize_h = (resize_h + max_stride - 1) // max_stride * max_stride resize_w = (resize_w + max_stride - 1) // max_stride * max_stride im = cv2.resize(im, (int(resize_w), int(resize_h))) ratio_h = resize_h / float(h) ratio_w = resize_w / float(w) return im, (ratio_h, ratio_w) def resize_image_for_totaltext(im, max_side_len=512): """ """ h, w, _ = im.shape resize_w = w resize_h = h ratio = 1.25 if h * ratio > max_side_len: ratio = float(max_side_len) / resize_h # Fix the longer side # if resize_h > resize_w: # ratio = float(max_side_len) / resize_h # else: # ratio = float(max_side_len) / resize_w ### resize_h = int(resize_h * ratio) resize_w = int(resize_w * ratio) max_stride = 128 resize_h = (resize_h + max_stride - 1) // max_stride * max_stride resize_w = (resize_w + max_stride - 1) // max_stride * max_stride im = cv2.resize(im, (int(resize_w), int(resize_h))) ratio_h = resize_h / float(h) ratio_w = resize_w / float(w) return im, (ratio_h, ratio_w) def point_pair2poly(point_pair_list): """ Transfer vertical point_pairs into poly point in clockwise. """ pair_length_list = [] for point_pair in point_pair_list: pair_length = np.linalg.norm(point_pair[0] - point_pair[1]) pair_length_list.append(pair_length) pair_length_list = np.array(pair_length_list) pair_info = (pair_length_list.max(), pair_length_list.min(), pair_length_list.mean()) # constract poly point_num = len(point_pair_list) * 2 point_list = [0] * point_num for idx, point_pair in enumerate(point_pair_list): point_list[idx] = point_pair[0] point_list[point_num - 1 - idx] = point_pair[1] return np.array(point_list).reshape(-1, 2), pair_info def shrink_quad_along_width(quad, begin_width_ratio=0., end_width_ratio=1.): """ Generate shrink_quad_along_width. """ ratio_pair = np.array( [[begin_width_ratio], [end_width_ratio]], dtype=np.float32) p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]]) def expand_poly_along_width(poly, shrink_ratio_of_width=0.3): """ expand poly along width. """ point_num = poly.shape[0] left_quad = np.array( [poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32) left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \ (np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6) left_quad_expand = shrink_quad_along_width(left_quad, left_ratio, 1.0) right_quad = np.array( [ poly[point_num // 2 - 2], poly[point_num // 2 - 1], poly[point_num // 2], poly[point_num // 2 + 1] ], dtype=np.float32) right_ratio = 1.0 + \ shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \ (np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6) right_quad_expand = shrink_quad_along_width(right_quad, 0.0, right_ratio) poly[0] = left_quad_expand[0] poly[-1] = left_quad_expand[-1] poly[point_num // 2 - 1] = right_quad_expand[1] poly[point_num // 2] = right_quad_expand[2] return poly def norm2(x, axis=None): if axis: return np.sqrt(np.sum(x**2, axis=axis)) return np.sqrt(np.sum(x**2)) def cos(p1, p2): return (p1 * p2).sum() / (norm2(p1) * norm2(p2))