# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) def set_paddle_flags(**kwargs): for key, value in kwargs.items(): if os.environ.get(key, None) is None: os.environ[key] = str(value) # NOTE(paddle-dev): All of these flags should be # set before `import paddle`. Otherwise, it would # not take any effect. set_paddle_flags( FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory ) import tools.program as program from paddle import fluid from ppocr.utils.utility import initial_logger from ppocr.utils.utility import enable_static_mode logger = initial_logger() from ppocr.data.reader_main import reader_main from ppocr.utils.save_load import init_model from paddle.fluid.contrib.model_stat import summary def main(): # build train program train_build_outputs = program.build( config, train_program, startup_program, mode='train') train_loader = train_build_outputs[0] train_fetch_name_list = train_build_outputs[1] train_fetch_varname_list = train_build_outputs[2] train_opt_loss_name = train_build_outputs[3] model_average = train_build_outputs[-1] # build eval program eval_program = fluid.Program() eval_build_outputs = program.build( config, eval_program, startup_program, mode='eval') eval_fetch_name_list = eval_build_outputs[1] eval_fetch_varname_list = eval_build_outputs[2] eval_program = eval_program.clone(for_test=True) # initialize train reader train_reader = reader_main(config=config, mode="train") train_loader.set_sample_list_generator(train_reader, places=place) # initialize eval reader eval_reader = reader_main(config=config, mode="eval") exe = fluid.Executor(place) exe.run(startup_program) # compile program for multi-devices train_compile_program = program.create_multi_devices_program( train_program, train_opt_loss_name) # dump mode structure if config['Global']['debug']: if train_alg_type == 'rec' and 'attention' in config['Global'][ 'loss_type']: logger.warning('Does not suport dump attention...') else: summary(train_program) init_model(config, train_program, exe) train_info_dict = {'compile_program':train_compile_program,\ 'train_program':train_program,\ 'reader':train_loader,\ 'fetch_name_list':train_fetch_name_list,\ 'fetch_varname_list':train_fetch_varname_list,\ 'model_average': model_average} eval_info_dict = {'program':eval_program,\ 'reader':eval_reader,\ 'fetch_name_list':eval_fetch_name_list,\ 'fetch_varname_list':eval_fetch_varname_list} if train_alg_type == 'det': program.train_eval_det_run(config, exe, train_info_dict, eval_info_dict) elif train_alg_type == 'rec': program.train_eval_rec_run(config, exe, train_info_dict, eval_info_dict) else: program.train_eval_cls_run(config, exe, train_info_dict, eval_info_dict) def test_reader(): logger.info(config) train_reader = reader_main(config=config, mode="train") import time starttime = time.time() count = 0 try: for data in train_reader(): count += 1 if count % 1 == 0: batch_time = time.time() - starttime starttime = time.time() logger.info("[reader]count: {}, data length: {}, time: {}". format(count, len(data), batch_time)) except Exception as e: logger.info(e) logger.info("finish reader: {}, Success!".format(count)) if __name__ == '__main__': enable_static_mode() startup_program, train_program, place, config, train_alg_type = program.preprocess( ) # run the train process main() # if you want to check the reader, you can comment `main` and run test_reader # test_reader()