# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys __dir__ = os.path.dirname(__file__) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..'))) sys.path.append( os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools'))) def set_paddle_flags(**kwargs): for key, value in kwargs.items(): if os.environ.get(key, None) is None: os.environ[key] = str(value) # NOTE(paddle-dev): All of these flags should be # set before `import paddle`. Otherwise, it would # not take any effect. set_paddle_flags( FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory ) import program import paddle from paddle import fluid from ppocr.utils.utility import initial_logger logger = initial_logger() from ppocr.utils.save_load import init_model, load_params from ppocr.utils.character import CharacterOps from ppocr.utils.utility import create_module from ppocr.data.reader_main import reader_main from paddleslim.quant import quant_aware, convert from paddle.fluid.layer_helper import LayerHelper from eval_utils.eval_det_utils import eval_det_run from eval_utils.eval_rec_utils import eval_rec_run from eval_utils.eval_cls_utils import eval_cls_run def main(): # 1. quantization configs quant_config = { # weight quantize type, default is 'channel_wise_abs_max' 'weight_quantize_type': 'channel_wise_abs_max', # activation quantize type, default is 'moving_average_abs_max' 'activation_quantize_type': 'moving_average_abs_max', # weight quantize bit num, default is 8 'weight_bits': 8, # activation quantize bit num, default is 8 'activation_bits': 8, # ops of name_scope in not_quant_pattern list, will not be quantized 'not_quant_pattern': ['skip_quant'], # ops of type in quantize_op_types, will be quantized 'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'], # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8' 'dtype': 'int8', # window size for 'range_abs_max' quantization. defaulf is 10000 'window_size': 10000, # The decay coefficient of moving average, default is 0.9 'moving_rate': 0.9, } # Run code with static graph mode. try: paddle.enable_static() except: pass startup_prog, eval_program, place, config, alg_type = program.preprocess() feeded_var_names, target_vars, fetches_var_name = program.build_export( config, eval_program, startup_prog) eval_program = eval_program.clone(for_test=True) exe = fluid.Executor(place) exe.run(startup_prog) eval_program = quant_aware( eval_program, place, quant_config, scope=None, for_test=True) init_model(config, eval_program, exe) # 2. Convert the program before save inference program # The dtype of eval_program's weights is float32, but in int8 range. eval_program = convert(eval_program, place, quant_config, scope=None) eval_fetch_name_list = fetches_var_name eval_fetch_varname_list = [v.name for v in target_vars] eval_reader = reader_main(config=config, mode="eval") quant_info_dict = {'program':eval_program,\ 'reader':eval_reader,\ 'fetch_name_list':eval_fetch_name_list,\ 'fetch_varname_list':eval_fetch_varname_list} if alg_type == 'det': final_metrics = eval_det_run(exe, config, quant_info_dict, "eval") elif alg_type == 'cls': final_metrics = eval_cls_run(exe, quant_info_dict) else: final_metrics = eval_rec_run(exe, config, quant_info_dict, "eval") print(final_metrics) # 3. Save inference model model_path = "./quant_model" if not os.path.isdir(model_path): os.makedirs(model_path) fluid.io.save_inference_model( dirname=model_path, feeded_var_names=feeded_var_names, target_vars=target_vars, executor=exe, main_program=eval_program, model_filename=model_path + '/model', params_filename=model_path + '/params') print("model saved as {}".format(model_path)) if __name__ == '__main__': main()